2009-02-17 09:45:57 +08:00
|
|
|
// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
|
2008-05-02 22:19:38 +08:00
|
|
|
/*
|
|
|
|
|
|
|
|
This is an example illustrating the use of the GUI API as well as some
|
|
|
|
aspects of image manipulation from the dlib C++ Library.
|
|
|
|
|
|
|
|
|
|
|
|
This is a pretty simple example. It takes a BMP file on the command line
|
|
|
|
and opens it up, runs a simple edge detection algorithm on it, and
|
|
|
|
displays the results on the screen.
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#include "dlib/gui_widgets.h"
|
|
|
|
#include "dlib/image_io.h"
|
|
|
|
#include "dlib/image_transforms.h"
|
|
|
|
#include <fstream>
|
|
|
|
|
|
|
|
|
|
|
|
using namespace std;
|
|
|
|
using namespace dlib;
|
|
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
int main(int argc, char** argv)
|
|
|
|
{
|
|
|
|
try
|
|
|
|
{
|
|
|
|
// make sure the user entered an argument to this program
|
|
|
|
if (argc != 2)
|
|
|
|
{
|
|
|
|
cout << "error, you have to enter a BMP file as an argument to this program" << endl;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
2008-06-21 22:31:41 +08:00
|
|
|
// Here we open the image file. Note that when you open a binary file with
|
2008-09-26 04:39:17 +08:00
|
|
|
// the C++ ifstream you must supply the ios::binary flag.
|
2008-05-02 22:19:38 +08:00
|
|
|
ifstream fin(argv[1],ios::binary);
|
|
|
|
if (!fin)
|
|
|
|
{
|
|
|
|
cout << "error, can't find " << argv[1] << endl;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Here we declare an image object that can store rgb_pixels. Note that in
|
|
|
|
// dlib there is no explicit image object, just a 2D array and
|
|
|
|
// various pixel types.
|
|
|
|
array2d<rgb_pixel>::kernel_1a img;
|
|
|
|
|
|
|
|
// now load the bmp file into our image. If the file isn't really a BMP
|
|
|
|
// or is corrupted then load_bmp() will throw an exception.
|
|
|
|
load_bmp(img, fin);
|
|
|
|
|
|
|
|
// Now lets use some image functions. This example is going to perform
|
|
|
|
// simple edge detection on the image. First lets find the horizontal and
|
|
|
|
// vertical gradient images.
|
|
|
|
array2d<short>::kernel_1a horz_gradient, vert_gradient;
|
|
|
|
array2d<unsigned char>::kernel_1a edge_image;
|
|
|
|
sobel_edge_detector(img,horz_gradient, vert_gradient);
|
|
|
|
|
|
|
|
// now we do the non-maximum edge suppression step so that our edges are nice and thin
|
|
|
|
suppress_non_maximum_edges(horz_gradient, vert_gradient, edge_image);
|
|
|
|
|
|
|
|
// Now we would like to see what our images look like. So lets use our
|
|
|
|
// window to display them on the screen.
|
|
|
|
|
|
|
|
|
|
|
|
// create a window to display the edge image
|
2009-03-23 02:26:33 +08:00
|
|
|
image_window my_window(edge_image);
|
2008-05-02 22:19:38 +08:00
|
|
|
|
|
|
|
// also make a window to display the original image
|
2009-03-23 02:26:33 +08:00
|
|
|
image_window my_window2(img);
|
2008-05-02 22:19:38 +08:00
|
|
|
|
|
|
|
// wait until the user closes both windows before we let the program
|
|
|
|
// terminate.
|
|
|
|
my_window.wait_until_closed();
|
|
|
|
my_window2.wait_until_closed();
|
|
|
|
}
|
|
|
|
catch (exception& e)
|
|
|
|
{
|
|
|
|
cout << "exception thrown: " << e.what() << endl;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
|