dlib/examples/CMakeLists.txt

262 lines
10 KiB
CMake
Raw Normal View History

#
# _______ _ _ _____ _____ _____ _____
# |__ __| | | |_ _|/ ____| |_ _|/ ____| /\
# | | | |__| | | | | (___ | | | (___ / \
# | | | __ | | | \___ \ | | \___ \ / /\ \
# | | | | | |_| |_ ____) | _| |_ ____) | / ____ \
# |_|__|_|_ |_|_____|_____/__ |_____|_____/ /_/ _ \_\
# |__ __| | | |__ __/ __ \| __ \|_ _| /\ | |
# | | | | | | | | | | | | |__) | | | / \ | |
# | | | | | | | | | | | | _ / | | / /\ \ | |
# | | | |__| | | | | |__| | | \ \ _| |_ / ____ \| |____
# |_| \____/ |_| \____/|_| \_\_____/_/ \_\______|
#
#
# _____ ______ _____ _______ _ _ ______
# | __ \| ____| /\ | __ \ |__ __| | | | ____|
# | |__) | |__ / \ | | | | | | | |__| | |__
# | _ /| __| / /\ \ | | | | | | | __ | __|
# | | \ \| |____ / ____ \| |__| | | | | | | | |____
# |_|__\_\______/_/_ __\_\_____/__ _ |_|__|_|_ |_|______|_ _ _
# / ____/ __ \| \/ | \/ | ____| \ | |__ __/ ____| | | | | |
# | | | | | | \ / | \ / | |__ | \| | | | | (___ | | | | |
# | | | | | | |\/| | |\/| | __| | . ` | | | \___ \ | | | | |
# | |___| |__| | | | | | | | |____| |\ | | | ____) | |_|_|_|_|
# \_____\____/|_| |_|_| |_|______|_| \_| |_| |_____/ (_|_|_|_)
#
#
#
# This is a CMake makefile. CMake is a tool that helps you build C++ programs.
# You can download CMake from http://www.cmake.org. This CMakeLists.txt file
# you are reading builds dlib's example programs.
#
cmake_minimum_required(VERSION 2.8.12)
# Every project needs a name. We call this the "examples" project.
project(examples)
# Tell cmake we will need dlib. This command will pull in dlib and compile it
# into your project. Note that you don't need to compile or install dlib. All
2017-10-18 07:18:57 +08:00
# cmake needs is the dlib source code folder and it will take care of everything.
add_subdirectory(../dlib dlib_build)
# If you have cmake 3.11 or newer you can even use FetchContent instead of
# add_subdirectory() to pull in dlib as a dependency. So instead of using the
# above add_subdirectory() command, you could use the following three commands
# to make dlib available:
# include(FetchContent)
# FetchContent_Declare(dlib
# GIT_REPOSITORY https://github.com/davisking/dlib.git
# GIT_TAG v19.18
# )
# FetchContent_MakeAvailable(dlib)
# The next thing we need to do is tell CMake about the code you want to
# compile. We do this with the add_executable() statement which takes the name
# of the output executable and then a list of .cpp files to compile. Here we
# are going to compile one of the dlib example programs which has only one .cpp
# file, assignment_learning_ex.cpp. If your program consisted of multiple .cpp
# files you would simply list them here in the add_executable() statement.
add_executable(assignment_learning_ex assignment_learning_ex.cpp)
# Finally, you need to tell CMake that this program, assignment_learning_ex,
# depends on dlib. You do that with this statement:
target_link_libraries(assignment_learning_ex dlib::dlib)
# To compile this program all you need to do is ask cmake. You would type
# these commands from within the directory containing this CMakeLists.txt
# file:
# mkdir build
2017-05-01 08:48:51 +08:00
# cd build
# cmake ..
# cmake --build . --config Release
#
# The cmake .. command looks in the parent folder for a file named
2017-12-25 21:50:34 +08:00
# CMakeLists.txt, reads it, and sets up everything needed to build program.
# Also, note that CMake can generate Visual Studio or XCode project files. So
# if instead you had written:
# cd build
# cmake .. -G Xcode
#
# You would be able to open the resulting Xcode project and compile and edit
# the example programs within the Xcode IDE. CMake can generate a lot of
# different types of IDE projects. Run the cmake -h command to see a list of
# arguments to -G to see what kinds of projects cmake can generate for you. It
# probably includes your favorite IDE in the list.
#################################################################################
#################################################################################
# A CMakeLists.txt file can compile more than just one program. So below we
# tell it to compile the other dlib example programs using pretty much the
# same CMake commands we used above.
#################################################################################
#################################################################################
2017-12-11 19:40:00 +08:00
# Since there are a lot of examples I'm going to use a macro to simplify this
# CMakeLists.txt file. However, usually you will create only one executable in
# your cmake projects and use the syntax shown above.
macro(add_example name)
add_executable(${name} ${name}.cpp)
target_link_libraries(${name} dlib::dlib )
endmacro()
# if an example requires GUI, call this macro to check DLIB_NO_GUI_SUPPORT to include or exclude
macro(add_gui_example name)
if (DLIB_NO_GUI_SUPPORT)
message("No GUI support, so we won't build the ${name} example.")
else()
add_example(${name})
endif()
endmacro()
# The deep learning toolkit requires a compiler with essentially complete C++11
# support. However, versions of Visual Studio prior to October 2016 didn't
# provide enough C++11 support to compile the DNN tooling, but were good enough
# to compile the rest of dlib. So new versions of Visual Studio 2015 will
# work. However, Visual Studio 2017 had some C++11 support regressions, so it
# wasn't until December 2017 that Visual Studio 2017 had good enough C++11
# support to compile the DNN examples. So if you are using Visual Studio, make
# sure you have an updated version if you want to compile the DNN code.
#
# Also note that Visual Studio users should give the -T host=x64 option so that
# CMake will instruct Visual Studio to use its 64bit toolchain. If you don't
# do this then by default Visual Studio uses a 32bit toolchain, WHICH RESTRICTS
# THE COMPILER TO ONLY 2GB OF RAM, causing it to run out of RAM and crash when
# compiling some of the DNN examples. So generate your project with a statement
# like this:
# cmake .. -G "Visual Studio 14 2015 Win64" -T host=x64
if (NOT USING_OLD_VISUAL_STUDIO_COMPILER)
add_example(dnn_metric_learning_ex)
add_gui_example(dnn_face_recognition_ex)
add_example(dnn_introduction_ex)
add_example(dnn_introduction2_ex)
2016-05-17 18:07:04 +08:00
add_example(dnn_inception_ex)
add_gui_example(dnn_mmod_ex)
add_gui_example(dnn_mmod_face_detection_ex)
add_gui_example(random_cropper_ex)
add_gui_example(dnn_mmod_dog_hipsterizer)
add_gui_example(dnn_imagenet_ex)
2017-08-27 05:13:47 +08:00
add_gui_example(dnn_mmod_find_cars_ex)
2017-09-17 03:35:58 +08:00
add_gui_example(dnn_mmod_find_cars2_ex)
2017-08-27 05:13:47 +08:00
add_example(dnn_mmod_train_find_cars_ex)
Add semantic segmentation example (#943) * Add example of semantic segmentation using the PASCAL VOC2012 dataset * Add note about Debug Information Format when using MSVC * Make the upsampling layers residual as well * Fix declaration order * Use a wider net * trainer.set_iterations_without_progress_threshold(5000); // (was 20000) * Add residual_up * Process entire directories of images (just easier to use) * Simplify network structure so that builds finish even on Visual Studio (faster, or at all) * Remove the training example from CMakeLists, because it's too much for the 32-bit MSVC++ compiler to handle * Remove the probably-now-unnecessary set_dnn_prefer_smallest_algorithms call * Review fix: remove the batch normalization layer from right before the loss * Review fix: point out that only the Visual C++ compiler has problems. Also expand the instructions how to run MSBuild.exe to circumvent the problems. * Review fix: use dlib::match_endings * Review fix: use dlib::join_rows. Also add some comments, and instructions where to download the pre-trained net from. * Review fix: make formatting comply with dlib style conventions. * Review fix: output training parameters. * Review fix: remove #ifndef __INTELLISENSE__ * Review fix: use std::string instead of char* * Review fix: update interpolation_abstract.h to say that extract_image_chips can now take the interpolation method as a parameter * Fix whitespace formatting * Add more comments * Fix finding image files for inference * Resize inference test output to the size of the input; add clarifying remarks * Resize net output even in calculate_accuracy * After all crop the net output instead of resizing it by interpolation * For clarity, add an empty line in the console output
2017-11-15 20:01:52 +08:00
add_gui_example(dnn_semantic_segmentation_ex)
add_example(dnn_imagenet_train_ex)
add_example(dnn_semantic_segmentation_train_ex)
add_example(dnn_metric_learning_on_images_ex)
2016-02-07 11:39:43 +08:00
endif()
if (DLIB_NO_GUI_SUPPORT)
message("No GUI support, so we won't build the webcam_face_pose_ex example.")
else()
find_package(OpenCV QUIET)
if (OpenCV_FOUND)
include_directories(${OpenCV_INCLUDE_DIRS})
add_executable(webcam_face_pose_ex webcam_face_pose_ex.cpp)
target_link_libraries(webcam_face_pose_ex dlib::dlib ${OpenCV_LIBS} )
else()
message("OpenCV not found, so we won't build the webcam_face_pose_ex example.")
endif()
endif()
#here we apply our macros
add_gui_example(3d_point_cloud_ex)
add_example(bayes_net_ex)
add_example(bayes_net_from_disk_ex)
add_gui_example(bayes_net_gui_ex)
add_example(bridge_ex)
2012-10-22 07:22:42 +08:00
add_example(bsp_ex)
add_example(compress_stream_ex)
add_example(config_reader_ex)
add_example(custom_trainer_ex)
add_example(dir_nav_ex)
add_example(empirical_kernel_map_ex)
add_gui_example(face_detection_ex)
add_gui_example(face_landmark_detection_ex)
add_gui_example(fhog_ex)
add_gui_example(fhog_object_detector_ex)
add_example(file_to_code_ex)
add_example(graph_labeling_ex)
add_gui_example(gui_api_ex)
add_gui_example(hough_transform_ex)
add_gui_example(image_ex)
2013-05-25 09:42:40 +08:00
add_example(integrate_function_adapt_simp_ex)
add_example(iosockstream_ex)
add_example(kcentroid_ex)
add_example(kkmeans_ex)
add_example(krls_ex)
add_example(krls_filter_ex)
add_example(krr_classification_ex)
add_example(krr_regression_ex)
add_example(learning_to_track_ex)
add_example(least_squares_ex)
add_example(linear_manifold_regularizer_ex)
add_example(logger_custom_output_ex)
add_example(logger_ex)
add_example(logger_ex_2)
add_example(matrix_ex)
add_example(matrix_expressions_ex)
add_example(max_cost_assignment_ex)
add_example(member_function_pointer_ex)
add_example(mlp_ex)
add_example(model_selection_ex)
add_gui_example(mpc_ex)
add_example(multiclass_classification_ex)
add_example(multithreaded_object_ex)
add_gui_example(object_detector_advanced_ex)
add_gui_example(object_detector_ex)
add_gui_example(one_class_classifiers_ex)
add_example(optimization_ex)
add_example(parallel_for_ex)
add_example(pipe_ex)
add_example(pipe_ex_2)
add_example(quantum_computing_ex)
add_example(queue_ex)
add_example(rank_features_ex)
2013-05-25 09:42:40 +08:00
add_example(running_stats_ex)
add_example(rvm_ex)
add_example(rvm_regression_ex)
add_example(sequence_labeler_ex)
add_example(sequence_segmenter_ex)
add_example(server_http_ex)
add_example(server_iostream_ex)
add_example(sockets_ex)
add_example(sockstreambuf_ex)
add_example(std_allocator_ex)
add_gui_example(surf_ex)
2014-12-10 07:13:45 +08:00
add_example(svm_c_ex)
add_example(svm_ex)
add_example(svm_pegasos_ex)
add_example(svm_rank_ex)
add_example(svm_sparse_ex)
add_example(svm_struct_ex)
add_example(svr_ex)
add_example(thread_function_ex)
add_example(thread_pool_ex)
2014-12-10 07:13:45 +08:00
add_example(threaded_object_ex)
add_example(threads_ex)
add_example(timer_ex)
add_gui_example(train_object_detector)
add_example(train_shape_predictor_ex)
add_example(using_custom_kernels_ex)
add_gui_example(video_tracking_ex)
add_example(xml_parser_ex)
2015-01-28 12:40:53 +08:00
if (DLIB_LINK_WITH_SQLITE3)
add_example(sqlite_ex)
endif()