dlib/examples/surf_ex.cpp

107 lines
4.0 KiB
C++
Raw Normal View History

// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
/*
This is a simple example illustrating the use of the get_surf_points()
function. It pull out the first 100 SURF points from an input image
and displays them on the screen as an overlay on the image.
For a description of the SURF algorithm you should consult the following
papers:
This is the original paper which introduced the algorithm:
SURF: Speeded Up Robust Features
By Herbert Bay, Tinne Tuytelaars, and Luc Van Gool
This paper provides a nice detailed overview of how the algorithm works:
Notes on the OpenSURF Library by Christopher Evans
*/
#include "dlib/gui_widgets.h"
#include "dlib/image_io.h"
#include "dlib/image_keypoint.h"
#include <fstream>
using namespace std;
using namespace dlib;
// ----------------------------------------------------------------------------
int main(int argc, char** argv)
{
try
{
// make sure the user entered an argument to this program
if (argc != 2)
{
cout << "error, you have to enter a BMP file as an argument to this program" << endl;
return 1;
}
// Here we open the image file. Note that when you open a binary file with
// the C++ ifstream you must supply the ios::binary flag.
ifstream fin(argv[1],ios::binary);
if (!fin)
{
cout << "error, can't find " << argv[1] << endl;
return 1;
}
// Here we declare an image object that can store rgb_pixels. Note that in
// dlib there is no explicit image object, just a 2D array and
// various pixel types.
array2d<rgb_pixel>::kernel_1a img;
// now load the bmp file into our image. If the file isn't really a BMP
// or is corrupted then load_bmp() will throw an exception.
load_bmp(img, fin);
// get the 100 strongest SURF points from the image
std::vector<surf_point> sp = get_surf_points(img, 100);
// create a window to display the input image and the SURF boxes
image_window my_window(img);
// Now lets draw some rectangles on top of the image so we can see where
// SURF found its points.
for (unsigned long i = 0; i < sp.size(); ++i)
{
// Pull out the info from the SURF point relevant to figuring out
// where its rotated box should be.
const double box_size = sp[i].p.scale*10;
const double ang = sp[i].angle;
const point center(sp[i].p.center);
rectangle rect = centered_rect(center, box_size, box_size);
// Rotate the 4 corners of the rectangle
const point p1 = rotate_point(center, rect.tl_corner(), ang);
const point p2 = rotate_point(center, rect.tr_corner(), ang);
const point p3 = rotate_point(center, rect.bl_corner(), ang);
const point p4 = rotate_point(center, rect.br_corner(), ang);
// Draw the sides of the box as red lines
my_window.add_overlay(image_window::overlay_line(p1, p2, rgb_pixel(255,0,0)));
my_window.add_overlay(image_window::overlay_line(p1, p3, rgb_pixel(255,0,0)));
my_window.add_overlay(image_window::overlay_line(p4, p2, rgb_pixel(255,0,0)));
my_window.add_overlay(image_window::overlay_line(p4, p3, rgb_pixel(255,0,0)));
// Draw a line from the center to the top side so we can see how the box is oriented.
// Also make this line green.
my_window.add_overlay(image_window::overlay_line(center, (p1+p2)/2, rgb_pixel(0,255,0)));
}
// wait until the user closes the window before we let the program
// terminate.
my_window.wait_until_closed();
}
catch (exception& e)
{
cout << "exception thrown: " << e.what() << endl;
}
}
// ----------------------------------------------------------------------------