dlib/examples/sequence_labeler_ex.cpp

205 lines
6.0 KiB
C++
Raw Normal View History

// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
/*
This is an example illustrating the use of the support vector machine
utilities from the dlib C++ Library.
This example creates a simple set of data to train on and then shows
you how to use the cross validation and svm training functions
to find a good decision function that can classify examples in our
data set.
The data used in this example will be 2 dimensional data and will
come from a distribution where points with a distance less than 10
from the origin are labeled +1 and all other points are labeled
as -1.
*/
#include <iostream>
#include "dlib/svm_threaded.h"
#include "dlib/rand.h"
using namespace std;
using namespace dlib;
const unsigned long num_label_states = 3; // the "hidden" states
const unsigned long num_sample_states = 3;
// ----------------------------------------------------------------------------------------
class feature_extractor
{
public:
typedef unsigned long sample_type;
unsigned long num_features() const
{
return num_label_states*num_label_states + num_label_states*num_sample_states;
}
unsigned long order() const
{
return 1;
}
unsigned long num_labels() const
{
return num_label_states;
}
template <typename feature_setter, typename EXP>
void get_features (
feature_setter& set_feature,
const std::vector<sample_type>& x,
const matrix_exp<EXP>& y,
unsigned long position
) const
{
if (y.size() > 1)
set_feature(y(1)*num_label_states + y(0));
set_feature(num_label_states*num_label_states +
y(0)*num_sample_states + x[position]);
}
};
// ----------------------------------------------------------------------------------------
void sample_hmm (
dlib::rand& rnd,
const matrix<double>& transition_probabilities,
const matrix<double>& emission_probabilities,
unsigned long previous_label,
unsigned long& next_label,
unsigned long& next_sample
)
{
double p = rnd.get_random_double();
for (long c = 0; p >= 0 && c < transition_probabilities.nc(); ++c)
{
next_label = c;
p -= transition_probabilities(previous_label, c);
}
p = rnd.get_random_double();
for (long c = 0; p >= 0 && c < emission_probabilities.nc(); ++c)
{
next_sample = c;
p -= emission_probabilities(next_label, c);
}
}
// ----------------------------------------------------------------------------------------
void make_dataset (
const matrix<double>& emission_probabilities,
const matrix<double>& transition_probabilities,
std::vector<std::vector<unsigned long> >& samples,
std::vector<std::vector<unsigned long> >& labels,
unsigned long dataset_size
)
/*!
2 kinds of label
3 kinds of input state
!*/
{
samples.clear();
labels.clear();
dlib::rand rnd;
// now randomly sample some labeled sequences from our Hidden Markov Model
for (unsigned long iter = 0; iter < dataset_size; ++iter)
{
const unsigned long size = rnd.get_random_32bit_number()%20+3;
std::vector<unsigned long> sample(size);
std::vector<unsigned long> label(size);
unsigned long previous_label = rnd.get_random_32bit_number()%num_label_states;
for (unsigned long i = 0; i < sample.size(); ++i)
{
unsigned long next_label, next_sample;
sample_hmm(rnd, transition_probabilities, emission_probabilities,
previous_label, next_label, next_sample);
label[i] = next_label;
sample[i] = next_sample;
previous_label = next_label;
}
samples.push_back(sample);
labels.push_back(label);
}
}
// ----------------------------------------------------------------------------------------
int main()
{
std::vector<std::vector<unsigned long> > samples;
std::vector<std::vector<unsigned long> > labels;
// set this up so emission_probabilities(L,X) == The probability of a state with label L
// emitting an X.
matrix<double> emission_probabilities(num_label_states,num_sample_states);
emission_probabilities = 0.5, 0.5, 0.0,
0.0, 0.5, 0.5,
0.5, 0.0, 0.5;
matrix<double> transition_probabilities(num_label_states, num_label_states);
transition_probabilities = 0.05, 0.90, 0.05,
0.05, 0.05, 0.90,
0.90, 0.05, 0.05;
make_dataset(emission_probabilities, transition_probabilities,
samples, labels, 1000);
cout << "samples.size(): "<< samples.size() << endl;
for (int i = 0; i < 10; ++i)
{
cout << trans(vector_to_matrix(labels[i]));
cout << trans(vector_to_matrix(samples[i]));
cout << "******************************" << endl;
}
structural_sequence_labeling_trainer<feature_extractor> trainer;
trainer.set_c(1000);
trainer.set_num_threads(4);
//trainer.be_verbose();
//sequence_labeler<feature_extractor> labeler = trainer.train(samples, labels);
//cout << labeler.get_weights() << endl;
matrix<double> cm;
cm = cross_validate_sequence_labeler(trainer, samples, labels, 4);
//cm = test_sequence_labeler(labeler, samples, labels);
cout << cm << endl;
cout << "label accuracy: "<< sum(diag(cm))/sum(cm) << endl;
matrix<double,0,1> true_hmm_model_weights = log(join_cols(reshape_to_column_vector(transition_probabilities),
reshape_to_column_vector(emission_probabilities)));
sequence_labeler<feature_extractor> labeler_true(feature_extractor(), true_hmm_model_weights);
cout << endl;
cm = test_sequence_labeler(labeler_true, samples, labels);
cout << cm << endl;
cout << "label accuracy: "<< sum(diag(cm))/sum(cm) << endl;
}
// ----------------------------------------------------------------------------------------