mirror of
https://github.com/davisking/dlib.git
synced 2024-11-01 10:14:53 +08:00
205 lines
6.0 KiB
C++
205 lines
6.0 KiB
C++
|
// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
|
||
|
/*
|
||
|
|
||
|
This is an example illustrating the use of the support vector machine
|
||
|
utilities from the dlib C++ Library.
|
||
|
|
||
|
This example creates a simple set of data to train on and then shows
|
||
|
you how to use the cross validation and svm training functions
|
||
|
to find a good decision function that can classify examples in our
|
||
|
data set.
|
||
|
|
||
|
|
||
|
The data used in this example will be 2 dimensional data and will
|
||
|
come from a distribution where points with a distance less than 10
|
||
|
from the origin are labeled +1 and all other points are labeled
|
||
|
as -1.
|
||
|
|
||
|
*/
|
||
|
|
||
|
|
||
|
#include <iostream>
|
||
|
#include "dlib/svm_threaded.h"
|
||
|
#include "dlib/rand.h"
|
||
|
|
||
|
using namespace std;
|
||
|
using namespace dlib;
|
||
|
|
||
|
|
||
|
const unsigned long num_label_states = 3; // the "hidden" states
|
||
|
const unsigned long num_sample_states = 3;
|
||
|
|
||
|
// ----------------------------------------------------------------------------------------
|
||
|
|
||
|
class feature_extractor
|
||
|
{
|
||
|
public:
|
||
|
typedef unsigned long sample_type;
|
||
|
|
||
|
unsigned long num_features() const
|
||
|
{
|
||
|
return num_label_states*num_label_states + num_label_states*num_sample_states;
|
||
|
}
|
||
|
|
||
|
unsigned long order() const
|
||
|
{
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
unsigned long num_labels() const
|
||
|
{
|
||
|
return num_label_states;
|
||
|
}
|
||
|
|
||
|
template <typename feature_setter, typename EXP>
|
||
|
void get_features (
|
||
|
feature_setter& set_feature,
|
||
|
const std::vector<sample_type>& x,
|
||
|
const matrix_exp<EXP>& y,
|
||
|
unsigned long position
|
||
|
) const
|
||
|
{
|
||
|
if (y.size() > 1)
|
||
|
set_feature(y(1)*num_label_states + y(0));
|
||
|
|
||
|
set_feature(num_label_states*num_label_states +
|
||
|
y(0)*num_sample_states + x[position]);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
// ----------------------------------------------------------------------------------------
|
||
|
|
||
|
|
||
|
void sample_hmm (
|
||
|
dlib::rand& rnd,
|
||
|
const matrix<double>& transition_probabilities,
|
||
|
const matrix<double>& emission_probabilities,
|
||
|
unsigned long previous_label,
|
||
|
unsigned long& next_label,
|
||
|
unsigned long& next_sample
|
||
|
)
|
||
|
{
|
||
|
double p = rnd.get_random_double();
|
||
|
for (long c = 0; p >= 0 && c < transition_probabilities.nc(); ++c)
|
||
|
{
|
||
|
next_label = c;
|
||
|
p -= transition_probabilities(previous_label, c);
|
||
|
}
|
||
|
|
||
|
|
||
|
p = rnd.get_random_double();
|
||
|
for (long c = 0; p >= 0 && c < emission_probabilities.nc(); ++c)
|
||
|
{
|
||
|
next_sample = c;
|
||
|
p -= emission_probabilities(next_label, c);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ----------------------------------------------------------------------------------------
|
||
|
|
||
|
void make_dataset (
|
||
|
const matrix<double>& emission_probabilities,
|
||
|
const matrix<double>& transition_probabilities,
|
||
|
std::vector<std::vector<unsigned long> >& samples,
|
||
|
std::vector<std::vector<unsigned long> >& labels,
|
||
|
unsigned long dataset_size
|
||
|
)
|
||
|
/*!
|
||
|
2 kinds of label
|
||
|
3 kinds of input state
|
||
|
!*/
|
||
|
{
|
||
|
samples.clear();
|
||
|
labels.clear();
|
||
|
|
||
|
dlib::rand rnd;
|
||
|
|
||
|
// now randomly sample some labeled sequences from our Hidden Markov Model
|
||
|
for (unsigned long iter = 0; iter < dataset_size; ++iter)
|
||
|
{
|
||
|
const unsigned long size = rnd.get_random_32bit_number()%20+3;
|
||
|
std::vector<unsigned long> sample(size);
|
||
|
std::vector<unsigned long> label(size);
|
||
|
|
||
|
unsigned long previous_label = rnd.get_random_32bit_number()%num_label_states;
|
||
|
for (unsigned long i = 0; i < sample.size(); ++i)
|
||
|
{
|
||
|
unsigned long next_label, next_sample;
|
||
|
sample_hmm(rnd, transition_probabilities, emission_probabilities,
|
||
|
previous_label, next_label, next_sample);
|
||
|
|
||
|
label[i] = next_label;
|
||
|
sample[i] = next_sample;
|
||
|
|
||
|
previous_label = next_label;
|
||
|
}
|
||
|
|
||
|
samples.push_back(sample);
|
||
|
labels.push_back(label);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ----------------------------------------------------------------------------------------
|
||
|
|
||
|
int main()
|
||
|
{
|
||
|
std::vector<std::vector<unsigned long> > samples;
|
||
|
std::vector<std::vector<unsigned long> > labels;
|
||
|
|
||
|
// set this up so emission_probabilities(L,X) == The probability of a state with label L
|
||
|
// emitting an X.
|
||
|
matrix<double> emission_probabilities(num_label_states,num_sample_states);
|
||
|
emission_probabilities = 0.5, 0.5, 0.0,
|
||
|
0.0, 0.5, 0.5,
|
||
|
0.5, 0.0, 0.5;
|
||
|
|
||
|
matrix<double> transition_probabilities(num_label_states, num_label_states);
|
||
|
|
||
|
transition_probabilities = 0.05, 0.90, 0.05,
|
||
|
0.05, 0.05, 0.90,
|
||
|
0.90, 0.05, 0.05;
|
||
|
|
||
|
|
||
|
make_dataset(emission_probabilities, transition_probabilities,
|
||
|
samples, labels, 1000);
|
||
|
|
||
|
cout << "samples.size(): "<< samples.size() << endl;
|
||
|
|
||
|
for (int i = 0; i < 10; ++i)
|
||
|
{
|
||
|
cout << trans(vector_to_matrix(labels[i]));
|
||
|
cout << trans(vector_to_matrix(samples[i]));
|
||
|
cout << "******************************" << endl;
|
||
|
}
|
||
|
|
||
|
structural_sequence_labeling_trainer<feature_extractor> trainer;
|
||
|
trainer.set_c(1000);
|
||
|
trainer.set_num_threads(4);
|
||
|
//trainer.be_verbose();
|
||
|
|
||
|
//sequence_labeler<feature_extractor> labeler = trainer.train(samples, labels);
|
||
|
//cout << labeler.get_weights() << endl;
|
||
|
|
||
|
matrix<double> cm;
|
||
|
|
||
|
cm = cross_validate_sequence_labeler(trainer, samples, labels, 4);
|
||
|
//cm = test_sequence_labeler(labeler, samples, labels);
|
||
|
cout << cm << endl;
|
||
|
cout << "label accuracy: "<< sum(diag(cm))/sum(cm) << endl;
|
||
|
|
||
|
|
||
|
|
||
|
matrix<double,0,1> true_hmm_model_weights = log(join_cols(reshape_to_column_vector(transition_probabilities),
|
||
|
reshape_to_column_vector(emission_probabilities)));
|
||
|
|
||
|
sequence_labeler<feature_extractor> labeler_true(feature_extractor(), true_hmm_model_weights);
|
||
|
|
||
|
cout << endl;
|
||
|
cm = test_sequence_labeler(labeler_true, samples, labels);
|
||
|
cout << cm << endl;
|
||
|
cout << "label accuracy: "<< sum(diag(cm))/sum(cm) << endl;
|
||
|
}
|
||
|
|
||
|
// ----------------------------------------------------------------------------------------
|
||
|
|