dlib/examples/using_custom_kernels_ex.cpp

209 lines
7.6 KiB
C++
Raw Permalink Normal View History

// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
/*
2011-06-05 22:26:36 +08:00
This is an example showing how to define custom kernel functions for use with
the machine learning tools in the dlib C++ Library.
This example assumes you are somewhat familiar with the machine learning
tools in dlib. In particular, you should be familiar with the krr_trainer
and the matrix object. So you may want to read the krr_classification_ex.cpp
and matrix_ex.cpp example programs if you haven't already.
*/
#include <iostream>
#include <dlib/svm.h>
using namespace std;
using namespace dlib;
// ----------------------------------------------------------------------------------------
/*
Here we define our new kernel. It is the UKF kernel from
Facilitating the applications of support vector machine by using a new kernel
by Rui Zhang and Wenjian Wang.
In the context of the dlib library a kernel function object is an object with
an interface with the following properties:
- a public typedef named sample_type
- a public typedef named scalar_type which should be a float, double, or
long double type.
- an overloaded operator() that operates on two items of sample_type
and returns a scalar_type.
- a public typedef named mem_manager_type that is an implementation of
dlib/memory_manager/memory_manager_kernel_abstract.h or
dlib/memory_manager_global/memory_manager_global_kernel_abstract.h or
dlib/memory_manager_stateless/memory_manager_stateless_kernel_abstract.h
- an overloaded == operator that tells you if two kernels are
identical or not.
Below we define such a beast for the UKF kernel. In this case we are expecting the
sample type (i.e. the T type) to be a dlib::matrix. However, note that you can design
kernels which operate on any type you like so long as you meet the above requirements.
*/
template < typename T >
struct ukf_kernel
{
typedef typename T::type scalar_type;
typedef T sample_type;
// If your sample type, the T, doesn't have a memory manager then
// you can use dlib::default_memory_manager here.
typedef typename T::mem_manager_type mem_manager_type;
ukf_kernel(const scalar_type g) : sigma(g) {}
ukf_kernel() : sigma(0.1) {}
scalar_type sigma;
scalar_type operator() (
const sample_type& a,
const sample_type& b
) const
{
// This is the formula for the UKF kernel from the above referenced paper.
return 1/(length_squared(a-b) + sigma);
}
bool operator== (
const ukf_kernel& k
) const
{
return sigma == k.sigma;
}
};
// ----------------------------------------------------------------------------------------
/*
Here we define serialize() and deserialize() functions for our new kernel. Defining
2011-06-05 22:26:36 +08:00
these functions is optional. However, if you don't define them you won't be able
to save your learned decision_function objects to disk.
*/
template < typename T >
void serialize ( const ukf_kernel<T>& item, std::ostream& out)
{
// save the state of the kernel to the output stream
serialize(item.sigma, out);
}
template < typename T >
void deserialize ( ukf_kernel<T>& item, std::istream& in )
{
deserialize(item.sigma, in);
}
// ----------------------------------------------------------------------------------------
/*
2011-06-04 10:35:05 +08:00
This next thing, the kernel_derivative specialization is optional. You only need
to define it if you want to use the dlib::reduced2() or dlib::approximate_distance_function()
routines. If so, then you need to supply code for computing the derivative of your kernel as
shown below. Note also that you can only do this if your kernel operates on dlib::matrix
objects which represent column vectors.
*/
namespace dlib
{
template < typename T >
struct kernel_derivative<ukf_kernel<T> >
{
typedef typename T::type scalar_type;
typedef T sample_type;
typedef typename T::mem_manager_type mem_manager_type;
kernel_derivative(const ukf_kernel<T>& k_) : k(k_){}
sample_type operator() (const sample_type& x, const sample_type& y) const
{
// return the derivative of the ukf kernel with respect to the second argument (i.e. y)
return 2*(x-y)*std::pow(k(x,y),2);
}
const ukf_kernel<T>& k;
};
}
// ----------------------------------------------------------------------------------------
int main()
{
// We are going to be working with 2 dimensional samples and trying to perform
// binary classification on them using our new ukf_kernel.
typedef matrix<double, 2, 1> sample_type;
typedef ukf_kernel<sample_type> kernel_type;
2014-02-23 05:07:17 +08:00
// Now let's generate some training data
std::vector<sample_type> samples;
std::vector<double> labels;
for (double r = -20; r <= 20; r += 0.9)
{
for (double c = -20; c <= 20; c += 0.9)
{
sample_type samp;
samp(0) = r;
samp(1) = c;
samples.push_back(samp);
// if this point is less than 13 from the origin
2012-05-21 08:25:01 +08:00
if (sqrt(r*r + c*c) <= 13)
labels.push_back(+1);
else
labels.push_back(-1);
}
}
cout << "samples generated: " << samples.size() << endl;
cout << " number of +1 samples: " << sum(mat(labels) > 0) << endl;
cout << " number of -1 samples: " << sum(mat(labels) < 0) << endl;
// A valid kernel must always give rise to kernel matrices which are symmetric
// and positive semidefinite (i.e. have nonnegative eigenvalues). This next
2011-06-04 10:35:05 +08:00
// bit of code makes a kernel matrix and checks if it has these properties.
const matrix<double> K = kernel_matrix(kernel_type(0.1), randomly_subsample(samples, 500));
cout << "\nIs it symmetric? (this value should be 0): "<< min(abs(K - trans(K))) << endl;
cout << "Smallest eigenvalue (should be >= 0): " << min(real_eigenvalues(K)) << endl;
// here we make an instance of the krr_trainer object that uses our new kernel.
krr_trainer<kernel_type> trainer;
trainer.use_classification_loss_for_loo_cv();
2014-02-23 05:07:17 +08:00
// Finally, let's test how good our new kernel is by doing some leave-one-out cross-validation.
cout << "\ndoing leave-one-out cross-validation" << endl;
for (double sigma = 0.01; sigma <= 100; sigma *= 3)
{
// tell the trainer the parameters we want to use
trainer.set_kernel(kernel_type(sigma));
std::vector<double> loo_values;
trainer.train(samples, labels, loo_values);
// Print sigma and the fraction of samples correctly classified during LOO cross-validation.
const double classification_accuracy = mean_sign_agreement(labels, loo_values);
cout << "sigma: " << sigma << " LOO accuracy: " << classification_accuracy << endl;
}
const kernel_type kern(10);
// Since it is very easy to make a mistake while coding a derivative it is a good idea
// to compare your derivative function against a numerical approximation and see if
// the results are similar. If they are very different then you probably made a
// mistake. So here we compare the results at a test point.
cout << "\nThese vectors should match, if they don't then we coded the kernel_derivative wrong!" << endl;
2011-06-05 22:26:36 +08:00
cout << "approximate derivative: \n" << derivative(kern)(samples[0],samples[100]) << endl;
cout << "exact derivative: \n" << kernel_derivative<kernel_type>(kern)(samples[0],samples[100]) << endl;
}