simgear/Lib/Math/MAT3vec.c
1999-04-05 21:32:32 +00:00

155 lines
4.4 KiB
C

/* Copyright 1988, Brown Computer Graphics Group. All Rights Reserved. */
/* --------------------------------------------------------------------------
* This file contains routines that operate on matrices and vectors, or
* vectors and vectors.
* -------------------------------------------------------------------------*/
/* #include "sphigslocal.h" */
/* -------------------------- Static Routines ---------------------------- */
/* ------------------------- Internal Routines --------------------------- */
/* -------------------------- Public Routines ---------------------------- */
/*
* Multiplies a vector by a matrix, setting the result vector.
* It assumes all homogeneous coordinates are 1.
* The two vectors involved may be the same.
*/
#include <Math/mat3.h>
#ifndef TRUE
# define TRUE 1
#endif
#ifndef FALSE
# define FALSE 0
#endif
#if !defined( USE_XTRA_MAT3_INLINES )
void
MAT3mult_vec(double *result_vec, register double *vec, register double (*mat)[4])
{
MAT3vec tempvec;
register double *temp = tempvec;
temp[0] = vec[0] * mat[0][0] + vec[1] * mat[1][0] +
vec[2] * mat[2][0] + mat[3][0];
temp[1] = vec[0] * mat[0][1] + vec[1] * mat[1][1] +
vec[2] * mat[2][1] + mat[3][1];
temp[2] = vec[0] * mat[0][2] + vec[1] * mat[1][2] +
vec[2] * mat[2][2] + mat[3][2];
MAT3_COPY_VEC(result_vec, temp);
}
#endif // !defined( USE_XTRA_MAT3_INLINES )
/*
* Multiplies a vector of size 4 by a matrix, setting the result vector.
* The fourth element of the vector is the homogeneous coordinate, which
* may or may not be 1. If the "normalize" parameter is TRUE, then the
* result vector will be normalized so that the homogeneous coordinate is 1.
* The two vectors involved may be the same.
* This returns zero if the vector was to be normalized, but couldn't be.
*/
int
MAT3mult_hvec(double *result_vec, register double *vec, register double (*mat)[4], int normalize)
{
MAT3hvec tempvec;
double norm_fac;
register double *temp = tempvec;
register int ret = TRUE;
temp[0] = vec[0] * mat[0][0] + vec[1] * mat[1][0] +
vec[2] * mat[2][0] + vec[3] * mat[3][0];
temp[1] = vec[0] * mat[0][1] + vec[1] * mat[1][1] +
vec[2] * mat[2][1] + vec[3] * mat[3][1];
temp[2] = vec[0] * mat[0][2] + vec[1] * mat[1][2] +
vec[2] * mat[2][2] + vec[3] * mat[3][2];
temp[3] = vec[0] * mat[0][3] + vec[1] * mat[1][3] +
vec[2] * mat[2][3] + vec[3] * mat[3][3];
/* Normalize if asked for, possible, and necessary */
if (normalize) {
if (MAT3_IS_ZERO(temp[3])) {
#ifndef THINK_C
fprintf (stderr,
"Can't normalize vector: homogeneous coordinate is 0");
#endif
ret = FALSE;
}
else {
norm_fac = 1.0 / temp[3];
MAT3_SCALE_VEC(result_vec, temp, norm_fac);
result_vec[3] = 1.0;
}
}
else MAT3_COPY_HVEC(result_vec, temp);
return(ret);
}
#if !defined( USE_XTRA_MAT3_INLINES )
/*
* Sets the first vector to be the cross-product of the last two vectors.
*/
void
MAT3cross_product(double *result_vec, register double *vec1, register double *vec2)
{
MAT3vec tempvec;
register double *temp = tempvec;
temp[0] = vec1[1] * vec2[2] - vec1[2] * vec2[1];
temp[1] = vec1[2] * vec2[0] - vec1[0] * vec2[2];
temp[2] = vec1[0] * vec2[1] - vec1[1] * vec2[0];
MAT3_COPY_VEC(result_vec, temp);
}
#endif // !defined( USE_XTRA_MAT3_INLINES )
/*
* Finds a vector perpendicular to vec and stores it in result_vec.
* Method: take any vector (we use <0,1,0>) and subtract the
* portion of it pointing in the vec direction. This doesn't
* work if vec IS <0,1,0> or is very near it. So if this is
* the case, use <0,0,1> instead.
* If "is_unit" is TRUE, the given vector is assumed to be unit length.
*/
#define SELECT .7071 /* selection constant (roughly .5*sqrt(2) */
void
MAT3perp_vec(double *result_vec, double *vec, int is_unit)
{
MAT3vec norm;
double dot;
MAT3_SET_VEC(result_vec, 0.0, 1.0, 0.0);
MAT3_COPY_VEC(norm, vec);
if (! is_unit) MAT3_NORMALIZE_VEC(norm, dot);
/* See if vector is too close to <0,1,0>. If so, use <0,0,1> */
if ((dot = MAT3_DOT_PRODUCT(norm, result_vec)) > SELECT || dot < -SELECT) {
result_vec[1] = 0.0;
result_vec[2] = 1.0;
dot = MAT3_DOT_PRODUCT(norm, result_vec);
}
/* Subtract off non-perpendicular part */
result_vec[0] -= dot * norm[0];
result_vec[1] -= dot * norm[1];
result_vec[2] -= dot * norm[2];
/* Make result unit length */
MAT3_NORMALIZE_VEC(result_vec, dot);
}