372 lines
12 KiB
C++
372 lines
12 KiB
C++
/**************************************************************************
|
|
* moonpos.cxx
|
|
* Written by Durk Talsma. Originally started October 1997, for distribution
|
|
* with the FlightGear project. Version 2 was written in August and
|
|
* September 1998. This code is based upon algorithms and data kindly
|
|
* provided by Mr. Paul Schlyter. (pausch@saaf.se).
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Library General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Library General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* $Id$
|
|
**************************************************************************/
|
|
|
|
#include <simgear_config.h>
|
|
#include <string.h>
|
|
|
|
#include <simgear/debug/logstream.hxx>
|
|
#include <simgear/math/SGMath.hxx>
|
|
|
|
#include <math.h>
|
|
|
|
// #include <FDM/flight.hxx>
|
|
|
|
#include "moonpos.hxx"
|
|
|
|
|
|
/*************************************************************************
|
|
* MoonPos::MoonPos(double mjd)
|
|
* Public constructor for class MoonPos. Initializes the orbital elements and
|
|
* sets up the moon texture.
|
|
* Argument: The current time.
|
|
* the hard coded orbital elements for MoonPos are passed to
|
|
* CelestialBody::CelestialBody();
|
|
************************************************************************/
|
|
MoonPos::MoonPos(double mjd) :
|
|
CelestialBody(125.1228, -0.0529538083,
|
|
5.1454, 0.00000,
|
|
318.0634, 0.1643573223,
|
|
60.266600, 0.000000,
|
|
0.054900, 0.000000,
|
|
115.3654, 13.0649929509, mjd)
|
|
{
|
|
}
|
|
|
|
MoonPos::MoonPos() :
|
|
CelestialBody(125.1228, -0.0529538083,
|
|
5.1454, 0.00000,
|
|
318.0634, 0.1643573223,
|
|
60.266600, 0.000000,
|
|
0.054900, 0.000000,
|
|
115.3654, 13.0649929509)
|
|
{
|
|
}
|
|
|
|
|
|
MoonPos::~MoonPos()
|
|
{
|
|
}
|
|
|
|
|
|
/*****************************************************************************
|
|
* void MoonPos::updatePositionTopo(double mjd, double lst, double
|
|
* lat, Star *ourSun) this member function calculates the actual
|
|
* topocentric position (i.e.) the position of the moon as seen from
|
|
* the current position on the surface of the earth. This include
|
|
* parallax effects, the moon appears on different stars background
|
|
* for different observers on the surface of the earth.
|
|
****************************************************************************/
|
|
void MoonPos::updatePositionTopo(double mjd, double lst, double lat, Star *ourSun)
|
|
{
|
|
double
|
|
eccAnom, ecl, actTime,
|
|
xv, yv, v, r, xh, yh, zh, zg, xe,
|
|
Ls, Lm, D, F, mpar, gclat, rho, HA, g,
|
|
geoRa, geoDec,
|
|
cosN, sinN, cosvw, sinvw, sinvw_cosi, cosecl, sinecl, rcoslatEcl,
|
|
FlesstwoD, MlesstwoD, twoD, twoM, twolat, alpha;
|
|
|
|
double max_loglux = -0.504030345621;
|
|
double min_loglux = -4.39964634562;
|
|
double conv = 1.0319696543787917; // The log foot-candle to log lux conversion factor.
|
|
updateOrbElements(mjd);
|
|
actTime = sgCalcActTime(mjd);
|
|
|
|
// calculate the angle between ecliptic and equatorial coordinate system
|
|
// in Radians
|
|
ecl = SGD_DEGREES_TO_RADIANS * (23.4393 - 3.563E-7 * actTime);
|
|
eccAnom = sgCalcEccAnom(M, e); // Calculate the eccentric anomaly
|
|
xv = a * (cos(eccAnom) - e);
|
|
yv = a * (sqrt(1.0 - e*e) * sin(eccAnom));
|
|
v = atan2(yv, xv); // the moon's true anomaly
|
|
r = sqrt (xv*xv + yv*yv); // and its distance
|
|
|
|
// repetitive calculations, minimised for speed
|
|
cosN = cos(N);
|
|
sinN = sin(N);
|
|
cosvw = cos(v+w);
|
|
sinvw = sin(v+w);
|
|
sinvw_cosi = sinvw * cos(i);
|
|
cosecl = cos(ecl);
|
|
sinecl = sin(ecl);
|
|
|
|
// estimate the geocentric rectangular coordinates here
|
|
xh = r * (cosN * cosvw - sinN * sinvw_cosi);
|
|
yh = r * (sinN * cosvw + cosN * sinvw_cosi);
|
|
zh = r * (sinvw * sin(i));
|
|
|
|
// calculate the ecliptic latitude and longitude here
|
|
lonEcl = atan2 (yh, xh);
|
|
latEcl = atan2(zh, sqrt(xh*xh + yh*yh));
|
|
|
|
/* Calculate a number of perturbation, i.e. disturbances caused by the
|
|
* gravitational influence of the sun and the other major planets.
|
|
* The largest of these even have a name */
|
|
Ls = ourSun->getM() + ourSun->getw();
|
|
Lm = M + w + N;
|
|
D = Lm - Ls;
|
|
F = Lm - N;
|
|
|
|
twoD = 2 * D;
|
|
twoM = 2 * M;
|
|
FlesstwoD = F - twoD;
|
|
MlesstwoD = M - twoD;
|
|
|
|
lonEcl += SGD_DEGREES_TO_RADIANS * (-1.274 * sin(MlesstwoD)
|
|
+0.658 * sin(twoD)
|
|
-0.186 * sin(ourSun->getM())
|
|
-0.059 * sin(twoM - twoD)
|
|
-0.057 * sin(MlesstwoD + ourSun->getM())
|
|
+0.053 * sin(M + twoD)
|
|
+0.046 * sin(twoD - ourSun->getM())
|
|
+0.041 * sin(M - ourSun->getM())
|
|
-0.035 * sin(D)
|
|
-0.031 * sin(M + ourSun->getM())
|
|
-0.015 * sin(2*F - twoD)
|
|
+0.011 * sin(M - 4*D)
|
|
);
|
|
latEcl += SGD_DEGREES_TO_RADIANS * (-0.173 * sin(FlesstwoD)
|
|
-0.055 * sin(M - FlesstwoD)
|
|
-0.046 * sin(M + FlesstwoD)
|
|
+0.033 * sin(F + twoD)
|
|
+0.017 * sin(twoM + F)
|
|
);
|
|
r += (-0.58 * cos(MlesstwoD)
|
|
-0.46 * cos(twoD)
|
|
);
|
|
distance = r;
|
|
distance_in_a = r/a;
|
|
// SG_LOG(SG_GENERAL, SG_INFO, "Running moon update");
|
|
rcoslatEcl = r * cos(latEcl);
|
|
xg = cos(lonEcl) * rcoslatEcl;
|
|
yg = sin(lonEcl) * rcoslatEcl;
|
|
zg = r * sin(latEcl);
|
|
|
|
xe = xg;
|
|
ye = yg * cosecl -zg * sinecl;
|
|
ze = yg * sinecl +zg * cosecl;
|
|
|
|
geoRa = atan2(ye, xe);
|
|
geoDec = atan2(ze, sqrt(xe*xe + ye*ye));
|
|
|
|
/* SG_LOG( SG_GENERAL, SG_INFO,
|
|
"(geocentric) geoRa = (" << (SGD_RADIANS_TO_DEGREES * geoRa)
|
|
<< "), geoDec= (" << (SGD_RADIANS_TO_DEGREES * geoDec) << ")" ); */
|
|
|
|
|
|
// Given the moon's geocentric ra and dec, calculate its
|
|
// topocentric ra and dec. i.e. the position as seen from the
|
|
// surface of the earth, instead of the center of the earth
|
|
|
|
// First calculate the moon's parallax, that is, the apparent size of the
|
|
// (equatorial) radius of the earth, as seen from the moon
|
|
mpar = asin ( 1 / r);
|
|
// SG_LOG( SG_GENERAL, SG_INFO, "r = " << r << " mpar = " << mpar );
|
|
// SG_LOG( SG_GENERAL, SG_INFO, "lat = " << f->get_Latitude() );
|
|
|
|
twolat = 2 * SGD_DEGREES_TO_RADIANS * lat;
|
|
gclat = lat - 0.003358 * sin(twolat);
|
|
// SG_LOG( SG_GENERAL, SG_INFO, "gclat = " << gclat );
|
|
|
|
rho = 0.99883 + 0.00167 * cos(twolat);
|
|
// SG_LOG( SG_GENERAL, SG_INFO, "rho = " << rho );
|
|
|
|
if (geoRa < 0)
|
|
geoRa += SGD_2PI;
|
|
|
|
HA = lst - (3.8197186 * geoRa);
|
|
/* SG_LOG( SG_GENERAL, SG_INFO, "t->getLst() = " << t->getLst()
|
|
<< " HA = " << HA ); */
|
|
|
|
g = atan (tan(gclat) / cos ((HA / 3.8197186)));
|
|
// SG_LOG( SG_GENERAL, SG_INFO, "g = " << g );
|
|
|
|
rightAscension = geoRa - mpar * rho * cos(gclat) * sin(HA) / cos (geoDec);
|
|
if (fabs(lat) > 0) {
|
|
declination
|
|
= geoDec - mpar * rho * sin (gclat) * sin (g - geoDec) / sin(g);
|
|
} else {
|
|
declination = geoDec;
|
|
// cerr << "Geocentric vs. Topocentric position" << endl;
|
|
// cerr << "RA (difference) : "
|
|
// << SGD_RADIANS_TO_DEGREES * (geoRa - rightAscension) << endl;
|
|
// cerr << "Dec (difference) : "
|
|
// << SGD_RADIANS_TO_DEGREES * (geoDec - declination) << endl;
|
|
}
|
|
|
|
/* SG_LOG( SG_GENERAL, SG_INFO,
|
|
"Ra = (" << (SGD_RADIANS_TO_DEGREES *rightAscension)
|
|
<< "), Dec= (" << (SGD_RADIANS_TO_DEGREES *declination) << ")" ); */
|
|
|
|
// Moon age and phase calculation
|
|
age = lonEcl - ourSun->getlonEcl();
|
|
phase = (1 - cos(age)) / 2;
|
|
|
|
// The log of the illuminance of the moon outside the atmosphere.
|
|
// This is the base 10 log of equation 20 from Krisciunas K. and Schaefer B.E.
|
|
// (1991). A model of the brightness of moonlight, Publ. Astron. Soc. Pacif.
|
|
// 103(667), 1033-1039 (DOI: http://dx.doi.org/10.1086/132921).
|
|
alpha = SGD_RADIANS_TO_DEGREES * SGMiscd::normalizeAngle(age + SGMiscd::pi());
|
|
log_I = -0.4 * (3.84 + 0.026*fabs(alpha) + 4e-9*pow(alpha, 4.0));
|
|
|
|
// Convert from foot-candles to lux.
|
|
log_I += conv;
|
|
|
|
// The moon's illuminance factor, bracketed between 0 and 1.
|
|
I_factor = (log_I - max_loglux) / (max_loglux - min_loglux) + 1.0;
|
|
I_factor = SGMiscd::clip(I_factor, 0, 1);
|
|
}
|
|
|
|
|
|
|
|
/*****************************************************************************
|
|
* void MoonPos::updatePosition(double mjd, Star *ourSun) this member
|
|
* function calculates the geocentric position (i.e.) the position of
|
|
* the moon as seen from the center of earth. As such, it does not
|
|
* include any parallax effects. These are taken into account during
|
|
* the rendering.
|
|
****************************************************************************/
|
|
void MoonPos::updatePosition(double mjd, Star *ourSun)
|
|
{
|
|
double
|
|
eccAnom, ecl, actTime,
|
|
xv, yv, v, r, xh, yh, zh, zg, xe,
|
|
Ls, Lm, D, F, geoRa, geoDec,
|
|
cosN, sinN, cosvw, sinvw, sinvw_cosi, cosecl, sinecl, rcoslatEcl,
|
|
FlesstwoD, MlesstwoD, twoD, twoM, alpha;
|
|
|
|
double max_loglux = -0.504030345621;
|
|
double min_loglux = -4.39964634562;
|
|
double conv = 1.0319696543787917; // The log foot-candle to log lux conversion factor.
|
|
updateOrbElements(mjd);
|
|
actTime = sgCalcActTime(mjd);
|
|
|
|
// calculate the angle between ecliptic and equatorial coordinate system
|
|
// in Radians
|
|
ecl = SGD_DEGREES_TO_RADIANS * (23.4393 - 3.563E-7 * actTime);
|
|
eccAnom = sgCalcEccAnom(M, e); // Calculate the eccentric anomaly
|
|
xv = a * (cos(eccAnom) - e);
|
|
yv = a * (sqrt(1.0 - e*e) * sin(eccAnom));
|
|
v = atan2(yv, xv); // the moon's true anomaly
|
|
r = sqrt (xv*xv + yv*yv); // and its distance
|
|
|
|
// repetitive calculations, minimised for speed
|
|
cosN = cos(N);
|
|
sinN = sin(N);
|
|
cosvw = cos(v+w);
|
|
sinvw = sin(v+w);
|
|
sinvw_cosi = sinvw * cos(i);
|
|
cosecl = cos(ecl);
|
|
sinecl = sin(ecl);
|
|
|
|
// estimate the geocentric rectangular coordinates here
|
|
xh = r * (cosN * cosvw - sinN * sinvw_cosi);
|
|
yh = r * (sinN * cosvw + cosN * sinvw_cosi);
|
|
zh = r * (sinvw * sin(i));
|
|
|
|
// calculate the ecliptic latitude and longitude here
|
|
lonEcl = atan2 (yh, xh);
|
|
latEcl = atan2(zh, sqrt(xh*xh + yh*yh));
|
|
|
|
/* Calculate a number of perturbation, i.e. disturbances caused by the
|
|
* gravitational influence of the sun and the other major planets.
|
|
* The largest of these even have a name */
|
|
Ls = ourSun->getM() + ourSun->getw();
|
|
Lm = M + w + N;
|
|
D = Lm - Ls;
|
|
F = Lm - N;
|
|
|
|
twoD = 2 * D;
|
|
twoM = 2 * M;
|
|
FlesstwoD = F - twoD;
|
|
MlesstwoD = M - twoD;
|
|
|
|
lonEcl += SGD_DEGREES_TO_RADIANS * (-1.274 * sin(MlesstwoD)
|
|
+0.658 * sin(twoD)
|
|
-0.186 * sin(ourSun->getM())
|
|
-0.059 * sin(twoM - twoD)
|
|
-0.057 * sin(MlesstwoD + ourSun->getM())
|
|
+0.053 * sin(M + twoD)
|
|
+0.046 * sin(twoD - ourSun->getM())
|
|
+0.041 * sin(M - ourSun->getM())
|
|
-0.035 * sin(D)
|
|
-0.031 * sin(M + ourSun->getM())
|
|
-0.015 * sin(2*F - twoD)
|
|
+0.011 * sin(M - 4*D)
|
|
);
|
|
latEcl += SGD_DEGREES_TO_RADIANS * (-0.173 * sin(FlesstwoD)
|
|
-0.055 * sin(M - FlesstwoD)
|
|
-0.046 * sin(M + FlesstwoD)
|
|
+0.033 * sin(F + twoD)
|
|
+0.017 * sin(twoM + F)
|
|
);
|
|
r += (-0.58 * cos(MlesstwoD)
|
|
-0.46 * cos(twoD)
|
|
);
|
|
// from the orbital elements, the unit of the distance is in Earth radius, around 60.
|
|
distance = r;
|
|
distance_in_a = r/a;
|
|
// SG_LOG(SG_GENERAL, SG_INFO, "Running moon update");
|
|
rcoslatEcl = r * cos(latEcl);
|
|
xg = cos(lonEcl) * rcoslatEcl;
|
|
yg = sin(lonEcl) * rcoslatEcl;
|
|
zg = r * sin(latEcl);
|
|
|
|
xe = xg;
|
|
ye = yg * cosecl -zg * sinecl;
|
|
ze = yg * sinecl +zg * cosecl;
|
|
|
|
geoRa = atan2(ye, xe);
|
|
geoDec = atan2(ze, sqrt(xe*xe + ye*ye));
|
|
|
|
if (geoRa < 0)
|
|
geoRa += SGD_2PI;
|
|
|
|
rightAscension = geoRa;
|
|
declination = geoDec;
|
|
|
|
|
|
/* SG_LOG( SG_GENERAL, SG_INFO,
|
|
"Ra = (" << (SGD_RADIANS_TO_DEGREES *rightAscension)
|
|
<< "), Dec= (" << (SGD_RADIANS_TO_DEGREES *declination) << ")" ); */
|
|
|
|
// Moon age and phase calculation
|
|
age = lonEcl - ourSun->getlonEcl();
|
|
phase = (1 - cos(age)) / 2;
|
|
|
|
// The log of the illuminance of the moon outside the atmosphere.
|
|
// This is the base 10 log of equation 20 from Krisciunas K. and Schaefer B.E.
|
|
// (1991). A model of the brightness of moonlight, Publ. Astron. Soc. Pacif.
|
|
// 103(667), 1033-1039 (DOI: http://dx.doi.org/10.1086/132921).
|
|
alpha = SGD_RADIANS_TO_DEGREES * SGMiscd::normalizeAngle(age + SGMiscd::pi());
|
|
log_I = -0.4 * (3.84 + 0.026*fabs(alpha) + 4e-9*pow(alpha, 4.0));
|
|
|
|
// Convert from foot-candles to lux.
|
|
log_I += conv;
|
|
|
|
// The moon's illuminance factor, bracketed between 0 and 1.
|
|
I_factor = (log_I - max_loglux) / (max_loglux - min_loglux) + 1.0;
|
|
I_factor = SGMiscd::clip(I_factor, 0, 1);
|
|
}
|