simgear/Lib/Math/MAT3geom.c
1999-04-05 21:32:32 +00:00

169 lines
4.8 KiB
C

/* #include "HEADERS.h" */
/* Copyright 1988, Brown Computer Graphics Group. All Rights Reserved. */
/* --------------------------------------------------------------------------
* This file contains routines that perform geometry-related operations
* on matrices.
* -------------------------------------------------------------------------*/
#include <Math/mat3defs.h>
/* -------------------------- Static Routines ---------------------------- */
/* ------------------------- Internal Routines --------------------------- */
/* -------------------------- Public Routines ---------------------------- */
/*
* This takes a matrix used to transform points, and returns a corresponding
* matrix that can be used to transform direction vectors (between points).
*/
void
MAT3direction_matrix(register double (*result_mat)[4], register double (*mat)[4])
{
register int i;
MAT3copy(result_mat, mat);
for (i = 0; i < 4; i++) result_mat[i][3] = result_mat[3][i] = 0.0;
result_mat[3][3] = 1.0;
}
/*
* This takes a matrix used to transform points, and returns a corresponding
* matrix that can be used to transform vectors that must remain perpendicular
* to planes defined by the points. It is useful when you are transforming
* some object that has both points and normals in its definition, and you
* only have the transformation matrix for the points. This routine returns
* FALSE if the normal matrix is uncomputable. Otherwise, it returns TRUE.
*
* Spike sez: "This is the adjoint for the non-homogeneous part of the
* transformation."
*/
int
MAT3normal_matrix(register double (*result_mat)[4], register double (*mat)[4])
{
register int ret;
MAT3mat tmp_mat;
MAT3direction_matrix(result_mat, mat);
if ( (ret = MAT3invert(tmp_mat, tmp_mat)) ) {
MAT3transpose(result_mat, tmp_mat);
}
return(ret);
}
/*
* Sets the given matrix to be a scale matrix for the given vector of
* scale values.
*/
void
MAT3scale(double (*result_mat)[4], double *scale)
{
MAT3identity(result_mat);
result_mat[0][0] = scale[0];
result_mat[1][1] = scale[1];
result_mat[2][2] = scale[2];
}
/*
* Sets up a matrix for a rotation about an axis given by the line from
* (0,0,0) to axis, through an angle (in radians).
* Looking along the axis toward the origin, the rotation is counter-clockwise.
*/
#define SELECT .7071 /* selection constant (roughly .5*sqrt(2) */
void
MAT3rotate(double (*result_mat)[4], double *axis, double angle_in_radians)
{
MAT3vec naxis, /* Axis of rotation, normalized */
base2, /* 2nd unit basis vec, perp to axis */
base3; /* 3rd unit basis vec, perp to axis & base2 */
double dot;
MAT3mat base_mat, /* Change-of-basis matrix */
base_mat_trans; /* Inverse of c-o-b matrix */
register int i;
/* Step 1: extend { axis } to a basis for 3-space: { axis, base2, base3 }
* which is orthonormal (all three have unit length, and all three are
* mutually orthogonal). Also should be oriented, i.e. axis cross base2 =
* base3, rather than -base3.
*
* Method: Find a vector linearly independent from axis. For this we
* either use the y-axis, or, if that is too close to axis, the
* z-axis. 'Too close' means that the dot product is too near to 1.
*/
MAT3_COPY_VEC(naxis, axis);
MAT3_NORMALIZE_VEC(naxis, dot);
if (dot == 0.0) {
/* ERR_ERROR(MAT3_errid, ERR_SEVERE,
(ERR_S, "Zero-length axis vector given to MAT3rotate")); */
return;
}
MAT3perp_vec(base2, naxis, TRUE);
MAT3cross_product(base3, naxis, base2);
/* Set up the change-of-basis matrix, and its inverse */
MAT3identity(base_mat);
MAT3identity(base_mat_trans);
MAT3identity(result_mat);
for (i = 0; i < 3; i++){
base_mat_trans[i][0] = base_mat[0][i] = naxis[i];
base_mat_trans[i][1] = base_mat[1][i] = base2[i];
base_mat_trans[i][2] = base_mat[2][i] = base3[i];
}
/* If T(u) = uR, where R is base_mat, then T(x-axis) = naxis,
* T(y-axis) = base2, and T(z-axis) = base3. The inverse of base_mat is
* its transpose. OK?
*/
result_mat[1][1] = result_mat[2][2] = cos(angle_in_radians);
result_mat[2][1] = -(result_mat[1][2] = sin(angle_in_radians));
MAT3mult(result_mat, base_mat_trans, result_mat);
MAT3mult(result_mat, result_mat, base_mat);
}
/*
* Sets the given matrix to be a translation matrix for the given vector of
* translation values.
*/
void
MAT3translate(double (*result_mat)[4], double *trans)
{
MAT3identity(result_mat);
result_mat[3][0] = trans[0];
result_mat[3][1] = trans[1];
result_mat[3][2] = trans[2];
}
/*
* Sets the given matrix to be a shear matrix for the given x and y shear
* values.
*/
void
MAT3shear(double (*result_mat)[4], double xshear, double yshear)
{
MAT3identity(result_mat);
result_mat[2][0] = xshear;
result_mat[2][1] = yshear;
}