130 lines
3.7 KiB
C++
130 lines
3.7 KiB
C++
// vector.cxx -- additional vector routines
|
|
//
|
|
// Written by Curtis Olson, started December 1997.
|
|
//
|
|
// Copyright (C) 1997 Curtis L. Olson - curt@infoplane.com
|
|
//
|
|
// This program is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of the
|
|
// License, or (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful, but
|
|
// WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program; if not, write to the Free Software
|
|
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
//
|
|
// $Id$
|
|
|
|
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
|
|
// #include <Include/fg_types.h>
|
|
|
|
#include "vector.hxx"
|
|
|
|
#include "mat3.h"
|
|
|
|
|
|
#if !defined( USE_XTRA_MAT3_INLINES )
|
|
// Map a vector onto the plane specified by normal
|
|
void map_vec_onto_cur_surface_plane(MAT3vec normal, MAT3vec v0, MAT3vec vec,
|
|
MAT3vec result)
|
|
{
|
|
MAT3vec u1, v, tmp;
|
|
|
|
// calculate a vector "u1" representing the shortest distance from
|
|
// the plane specified by normal and v0 to a point specified by
|
|
// "vec". "u1" represents both the direction and magnitude of
|
|
// this desired distance.
|
|
|
|
// u1 = ( (normal <dot> vec) / (normal <dot> normal) ) * normal
|
|
|
|
MAT3_SCALE_VEC( u1,
|
|
normal,
|
|
( MAT3_DOT_PRODUCT(normal, vec) /
|
|
MAT3_DOT_PRODUCT(normal, normal)
|
|
)
|
|
);
|
|
|
|
// printf(" vec = %.2f, %.2f, %.2f\n", vec[0], vec[1], vec[2]);
|
|
// printf(" v0 = %.2f, %.2f, %.2f\n", v0[0], v0[1], v0[2]);
|
|
// printf(" u1 = %.2f, %.2f, %.2f\n", u1[0], u1[1], u1[2]);
|
|
|
|
// calculate the vector "v" which is the vector "vec" mapped onto
|
|
// the plane specified by "normal" and "v0".
|
|
|
|
// v = v0 + vec - u1
|
|
|
|
MAT3_ADD_VEC(tmp, v0, vec);
|
|
MAT3_SUB_VEC(v, tmp, u1);
|
|
// printf(" v = %.2f, %.2f, %.2f\n", v[0], v[1], v[2]);
|
|
|
|
// Calculate the vector "result" which is "v" - "v0" which is a
|
|
// directional vector pointing from v0 towards v
|
|
|
|
// result = v - v0
|
|
|
|
MAT3_SUB_VEC(result, v, v0);
|
|
// printf(" result = %.2f, %.2f, %.2f\n",
|
|
// result[0], result[1], result[2]);
|
|
}
|
|
#endif // !defined( USE_XTRA_MAT3_INLINES )
|
|
|
|
|
|
// Given a point p, and a line through p0 with direction vector d,
|
|
// find the shortest distance from the point to the line
|
|
double fgPointLine(MAT3vec p, MAT3vec p0, MAT3vec d) {
|
|
MAT3vec u, u1, v;
|
|
double ud, dd, tmp;
|
|
|
|
// u = p - p0
|
|
MAT3_SUB_VEC(u, p, p0);
|
|
|
|
// calculate the projection, u1, of u along d.
|
|
// u1 = ( dot_prod(u, d) / dot_prod(d, d) ) * d;
|
|
ud = MAT3_DOT_PRODUCT(u, d);
|
|
dd = MAT3_DOT_PRODUCT(d, d);
|
|
tmp = ud / dd;
|
|
|
|
MAT3_SCALE_VEC(u1, d, tmp);;
|
|
|
|
// v = u - u1 = vector from closest point on line, p1, to the
|
|
// original point, p.
|
|
MAT3_SUB_VEC(v, u, u1);
|
|
|
|
return sqrt(MAT3_DOT_PRODUCT(v, v));
|
|
}
|
|
|
|
|
|
// Given a point p, and a line through p0 with direction vector d,
|
|
// find the shortest distance (squared) from the point to the line
|
|
double fgPointLineSquared(MAT3vec p, MAT3vec p0, MAT3vec d) {
|
|
MAT3vec u, u1, v;
|
|
double ud, dd, tmp;
|
|
|
|
// u = p - p0
|
|
MAT3_SUB_VEC(u, p, p0);
|
|
|
|
// calculate the projection, u1, of u along d.
|
|
// u1 = ( dot_prod(u, d) / dot_prod(d, d) ) * d;
|
|
ud = MAT3_DOT_PRODUCT(u, d);
|
|
dd = MAT3_DOT_PRODUCT(d, d);
|
|
tmp = ud / dd;
|
|
|
|
MAT3_SCALE_VEC(u1, d, tmp);;
|
|
|
|
// v = u - u1 = vector from closest point on line, p1, to the
|
|
// original point, p.
|
|
MAT3_SUB_VEC(v, u, u1);
|
|
|
|
return ( MAT3_DOT_PRODUCT(v, v) );
|
|
}
|
|
|
|
|