// polar.cxx -- routines to deal with polar math and transformations // // Written by Curtis Olson, started June 1997. // // Copyright (C) 1997 Curtis L. Olson - curt@infoplane.com // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. // // $Id$ #include #include #include #include "polar3d.hxx" // Find the Altitude above the Ellipsoid (WGS84) given the Earth // Centered Cartesian coordinate vector Distances are specified in // meters. double fgGeodAltFromCart(const Point3D& cp) { double t_lat, x_alpha, mu_alpha; double lat_geoc, radius; double result; lat_geoc = FG_PI_2 - atan2( sqrt(cp.x()*cp.x() + cp.y()*cp.y()), cp.z() ); radius = sqrt( cp.x()*cp.x() + cp.y()*cp.y() + cp.z()*cp.z() ); if( ( (FG_PI_2 - lat_geoc) < ONE_SECOND ) // near North pole || ( (FG_PI_2 + lat_geoc) < ONE_SECOND ) ) // near South pole { result = radius - EQUATORIAL_RADIUS_M*E; } else { t_lat = tan(lat_geoc); x_alpha = E*EQUATORIAL_RADIUS_M/sqrt(t_lat*t_lat + E*E); mu_alpha = atan2(sqrt(RESQ_M - x_alpha*x_alpha),E*x_alpha); if (lat_geoc < 0) { mu_alpha = - mu_alpha; } result = (radius - x_alpha/cos(lat_geoc))*cos(mu_alpha - lat_geoc); } return(result); }