Working on separating out ephemeris code from the actual rendering code

which I am trying to ssg-ify at the same time.
This commit is contained in:
curt 2000-03-02 12:51:30 +00:00
parent 03b10d64a8
commit a8db14196a
13 changed files with 182 additions and 1131 deletions

View File

@ -2,6 +2,7 @@ noinst_LIBRARIES = libAstro.a
libAstro_a_SOURCES = \
celestialBody.cxx celestialBody.hxx \
ephemeris.cxx ephemeris.hxx \
jupiter.cxx jupiter.hxx \
mars.cxx mars.hxx \
mercury.cxx mercury.hxx \

View File

@ -39,8 +39,8 @@ class Star;
class CelestialBody
{
protected: // make the data protected, in order to give the inherited
// classes direct access to the data
protected: // make the data protected, in order to give the
// inherited classes direct access to the data
double NFirst; /* longitude of the ascending node first part */
double NSec; /* longitude of the ascending node second part */
double iFirst; /* inclination to the ecliptic first part */
@ -72,8 +72,17 @@ public:
double af, double as,
double ef, double es,
double Mf, double Ms, FGTime *t);
CelestialBody(double Nf, double Ns,
double If, double Is,
double wf, double ws,
double af, double as,
double ef, double es,
double Mf, double Ms);
void getPos(double *ra, double *dec);
void getPos(double *ra, double *dec, double *magnitude);
double getRightAscension();
double getDeclination();
double getMagnitude();
double getLon();
double getLat();
void updatePosition(FGTime *t, Star *ourSun);
@ -115,6 +124,21 @@ inline CelestialBody::CelestialBody(double Nf, double Ns,
updateOrbElements(t);
};
inline CelestialBody::CelestialBody(double Nf, double Ns,
double If, double Is,
double wf, double ws,
double af, double as,
double ef, double es,
double Mf, double Ms)
{
NFirst = Nf; NSec = Ns;
iFirst = If; iSec = Is;
wFirst = wf; wSec = ws;
aFirst = af; aSec = as;
eFirst = ef; eSec = es;
MFirst = Mf; MSec = Ms;
};
/****************************************************************************
* inline void CelestialBody::updateOrbElements(FGTime *t)
* given the current time, this private member calculates the actual
@ -171,6 +195,10 @@ inline void CelestialBody::getPos(double* ra, double* dec, double* magn)
*magn = magnitude;
}
inline double CelestialBody::getRightAscension() { return rightAscension; }
inline double CelestialBody::getDeclination() { return declination; }
inline double CelestialBody::getMagnitude() { return magnitude; }
inline double CelestialBody::getLon()
{
return lonEcl;

View File

@ -1,814 +0,0 @@
// skydome.cxx -- model sky with an upside down "bowl"
//
// Written by Curtis Olson, started December 1997.
// SSG-ified by Curtis Olson, February 2000.
//
// Copyright (C) 1997-2000 Curtis L. Olson - curt@flightgear.org
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
//
// $Id$
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#ifdef HAVE_WINDOWS_H
# include <windows.h>
#endif
#include <math.h>
#include <GL/glut.h>
#include <simgear/xgl/xgl.h>
#include <simgear/constants.h>
#include <simgear/debug/logstream.hxx>
#include <simgear/math/fg_random.h>
#include <Aircraft/aircraft.hxx>
#include <FDM/flight.hxx>
#include <Main/views.hxx>
#include <Time/event.hxx>
#include <Time/fg_time.hxx>
#include "skydome.hxx"
#ifdef __MWERKS__
# pragma global_optimizer off
#endif
// in meters of course
#define CENTER_ELEV 25000.0
#define UPPER_RADIUS 50000.0
#define UPPER_ELEV 20000.0
#define MIDDLE_RADIUS 70000.0
#define MIDDLE_ELEV 8000.0
#define LOWER_RADIUS 80000.0
#define LOWER_ELEV 0.0
#define BOTTOM_RADIUS 50000.0
#define BOTTOM_ELEV -2000.0
// static float inner_vertex[12][3];
// static float middle_vertex[12][3];
// static float outer_vertex[12][3];
// static float bottom_vertex[12][3];
// static GLubyte upper_color[12][4];
// static GLubyte middle_color[12][4];
// static GLubyte lower_color[12][4];
// Defined the shared sky object here
FGSkyDome current_sky;
// Constructor
FGSkyDome::FGSkyDome( void ) {
}
// Destructor
FGSkyDome::~FGSkyDome( void ) {
}
// initialize the sky object and connect it into the scene graph
bool FGSkyDome::initialize( ssgRoot *root ) {
sgVec3 color;
float theta;
int i;
// set up the state
sky_state = new ssgSimpleState();
if ( current_options.get_shading() == 1 ) {
sky_state->setShadeModel( GL_SMOOTH );
} else {
sky_state->setShadeModel( GL_FLAT );
}
sky_state->disable( GL_LIGHTING );
sky_state->disable( GL_DEPTH_TEST );
sky_state->disable( GL_CULL_FACE );
sky_state->disable( GL_TEXTURE );
sky_state->enable( GL_COLOR_MATERIAL );
sky_state->setColourMaterial( GL_AMBIENT_AND_DIFFUSE );
// initialize arrays
center_disk_vl = new ssgVertexArray( 14 );
center_disk_cl = new ssgColourArray( 14 );
upper_ring_vl = new ssgVertexArray( 26 );
upper_ring_cl = new ssgColourArray( 26 );
middle_ring_vl = new ssgVertexArray( 26 );
middle_ring_cl = new ssgColourArray( 26 );
lower_ring_vl = new ssgVertexArray( 26 );
lower_ring_cl = new ssgColourArray( 26 );
// initially seed to all blue
sgSetVec3( color, 0.0, 0.0, 1.0 );
// generate the raw vertex data
sgVec3 center_vertex;
sgVec3 upper_vertex[12];
sgVec3 middle_vertex[12];
sgVec3 lower_vertex[12];
sgVec3 bottom_vertex[12];
sgSetVec3( center_vertex, 0.0, 0.0, CENTER_ELEV );
for ( i = 0; i < 12; i++ ) {
theta = (i * 30.0) * DEG_TO_RAD;
sgSetVec3( upper_vertex[i],
cos(theta) * UPPER_RADIUS,
sin(theta) * UPPER_RADIUS,
UPPER_ELEV );
sgSetVec3( middle_vertex[i],
cos((double)theta) * MIDDLE_RADIUS,
sin((double)theta) * MIDDLE_RADIUS,
MIDDLE_ELEV );
sgSetVec3( lower_vertex[i],
cos((double)theta) * LOWER_RADIUS,
sin((double)theta) * LOWER_RADIUS,
LOWER_ELEV );
sgSetVec3( bottom_vertex[i],
cos((double)theta) * BOTTOM_RADIUS,
sin((double)theta) * BOTTOM_RADIUS,
BOTTOM_ELEV );
}
// generate the center disk vertex/color arrays
center_disk_vl->add( center_vertex );
center_disk_cl->add( color );
for ( i = 11; i >= 0; i-- ) {
center_disk_vl->add( upper_vertex[i] );
center_disk_cl->add( color );
}
center_disk_vl->add( upper_vertex[11] );
center_disk_cl->add( color );
// generate the upper ring
for ( i = 0; i < 12; i++ ) {
upper_ring_vl->add( middle_vertex[i] );
upper_ring_cl->add( color );
upper_ring_vl->add( upper_vertex[i] );
upper_ring_cl->add( color );
}
upper_ring_vl->add( middle_vertex[0] );
upper_ring_cl->add( color );
upper_ring_vl->add( upper_vertex[0] );
upper_ring_cl->add( color );
// generate middle ring
for ( i = 0; i < 12; i++ ) {
middle_ring_vl->add( lower_vertex[i] );
middle_ring_cl->add( color );
middle_ring_vl->add( middle_vertex[i] );
middle_ring_cl->add( color );
}
middle_ring_vl->add( lower_vertex[0] );
middle_ring_cl->add( color );
middle_ring_vl->add( middle_vertex[0] );
middle_ring_cl->add( color );
// generate lower ring
for ( i = 0; i < 12; i++ ) {
lower_ring_vl->add( bottom_vertex[i] );
lower_ring_cl->add( color );
lower_ring_vl->add( lower_vertex[i] );
lower_ring_cl->add( color );
}
lower_ring_vl->add( bottom_vertex[0] );
lower_ring_cl->add( color );
lower_ring_vl->add( lower_vertex[0] );
lower_ring_cl->add( color );
// force a repaint of the sky colors with ugly defaults
sgVec3 fog_color;
sgSetVec3( fog_color, 1.0, 1.0, 1.0 );
repaint( color, fog_color, 0.0 );
// build the ssg scene graph sub tree for the sky and connected
// into the provide scene graph branch
sky_selector = new ssgSelector;
sky_transform = new ssgTransform;
ssgVtxTable *center_disk, *upper_ring, *middle_ring, *lower_ring;
center_disk = new ssgVtxTable( GL_TRIANGLE_FAN,
center_disk_vl, NULL, NULL, center_disk_cl );
upper_ring = new ssgVtxTable( GL_TRIANGLE_STRIP,
upper_ring_vl, NULL, NULL, upper_ring_cl );
middle_ring = new ssgVtxTable( GL_TRIANGLE_STRIP,
middle_ring_vl, NULL, NULL, middle_ring_cl );
lower_ring = new ssgVtxTable( GL_TRIANGLE_STRIP,
lower_ring_vl, NULL, NULL, lower_ring_cl );
center_disk->setState( sky_state );
upper_ring->setState( sky_state );
middle_ring->setState( sky_state );
lower_ring->setState( sky_state );
sky_transform->addKid( center_disk );
sky_transform->addKid( upper_ring );
sky_transform->addKid( middle_ring );
sky_transform->addKid( lower_ring );
sky_selector->addKid( sky_transform );
sky_selector->clrTraversalMaskBits( SSGTRAV_HOT );
root->addKid( sky_selector );
return true;
}
// repaint the sky colors based on current value of sun_angle, sky,
// and fog colors. This updates the color arrays for ssgVtxTable.
// sun angle in degrees relative to verticle
// 0 degrees = high noon
// 90 degrees = sun rise/set
// 180 degrees = darkest midnight
bool FGSkyDome::repaint( sgVec3 sky_color, sgVec3 fog_color, double sun_angle ) {
double diff;
sgVec3 outer_param, outer_amt, outer_diff;
sgVec3 middle_param, middle_amt, middle_diff;
int i, j;
// Check for sunrise/sunset condition
if ( (sun_angle > 80.0) && (sun_angle < 100.0) ) {
// 0.0 - 0.4
sgSetVec3( outer_param,
(10.0 - fabs(90.0 - sun_angle)) / 20.0,
(10.0 - fabs(90.0 - sun_angle)) / 40.0,
-(10.0 - fabs(90.0 - sun_angle)) / 30.0 );
sgSetVec3( middle_param,
(10.0 - fabs(90.0 - sun_angle)) / 40.0,
(10.0 - fabs(90.0 - sun_angle)) / 80.0,
0.0 );
sgScaleVec3( outer_diff, outer_param, 1.0 / 6.0 );
sgScaleVec3( middle_diff, middle_param, 1.0 / 6.0 );
} else {
sgSetVec3( outer_param, 0.0, 0.0, 0.0 );
sgSetVec3( middle_param, 0.0, 0.0, 0.0 );
sgSetVec3( outer_diff, 0.0, 0.0, 0.0 );
sgSetVec3( middle_diff, 0.0, 0.0, 0.0 );
}
// printf(" outer_red_param = %.2f outer_red_diff = %.2f\n",
// outer_red_param, outer_red_diff);
// calculate transition colors between sky and fog
sgCopyVec3( outer_amt, outer_param );
sgCopyVec3( middle_amt, middle_param );
//
// First, recalulate the basic colors
//
sgVec3 upper_color[12];
sgVec3 middle_color[12];
sgVec3 lower_color[12];
sgVec3 bottom_color[12];
for ( i = 0; i < 6; i++ ) {
for ( j = 0; j < 3; j++ ) {
diff = sky_color[j] - fog_color[j];
// printf("sky = %.2f fog = %.2f diff = %.2f\n",
// l->sky_color[j], l->fog_color[j], diff);
upper_color[i][j] = sky_color[j] - diff * 0.3;
middle_color[i][j] = sky_color[j] - diff * 0.9 + middle_amt[j];
lower_color[i][j] = fog_color[j] + outer_amt[j];
if ( upper_color[i][j] > 1.0 ) { upper_color[i][j] = 1.0; }
if ( upper_color[i][j] < 0.1 ) { upper_color[i][j] = 0.1; }
if ( middle_color[i][j] > 1.0 ) { middle_color[i][j] = 1.0; }
if ( middle_color[i][j] < 0.1 ) { middle_color[i][j] = 0.1; }
if ( lower_color[i][j] > 1.0 ) { lower_color[i][j] = 1.0; }
if ( lower_color[i][j] < 0.1 ) { lower_color[i][j] = 0.1; }
}
// upper_color[i][3] = middle_color[i][3] = lower_color[i][3] =
// (GLubyte)(sky_color[3] * 1.0);
for ( j = 0; j < 3; j++ ) {
outer_amt[j] -= outer_diff[j];
middle_amt[j] -= middle_diff[j];
}
/*
printf("upper_color[%d] = %.2f %.2f %.2f %.2f\n", i, upper_color[i][0],
upper_color[i][1], upper_color[i][2], upper_color[i][3]);
printf("middle_color[%d] = %.2f %.2f %.2f %.2f\n", i,
middle_color[i][0], middle_color[i][1], middle_color[i][2],
middle_color[i][3]);
printf("lower_color[%d] = %.2f %.2f %.2f %.2f\n", i,
lower_color[i][0], lower_color[i][1], lower_color[i][2],
lower_color[i][3]);
*/
}
sgSetVec3( outer_amt, 0.0, 0.0, 0.0 );
sgSetVec3( middle_amt, 0.0, 0.0, 0.0 );
for ( i = 6; i < 12; i++ ) {
for ( j = 0; j < 3; j++ ) {
diff = sky_color[j] - fog_color[j];
// printf("sky = %.2f fog = %.2f diff = %.2f\n",
// sky_color[j], fog_color[j], diff);
upper_color[i][j] = sky_color[j] - diff * 0.3;
middle_color[i][j] = sky_color[j] - diff * 0.9 + middle_amt[j];
lower_color[i][j] = fog_color[j] + outer_amt[j];
if ( upper_color[i][j] > 1.0 ) { upper_color[i][j] = 1.0; }
if ( upper_color[i][j] < 0.1 ) { upper_color[i][j] = 0.1; }
if ( middle_color[i][j] > 1.0 ) { middle_color[i][j] = 1.0; }
if ( middle_color[i][j] < 0.1 ) { middle_color[i][j] = 0.1; }
if ( lower_color[i][j] > 1.0 ) { lower_color[i][j] = 1.0; }
if ( lower_color[i][j] < 35 ) { lower_color[i][j] = 35; }
}
// upper_color[i][3] = middle_color[i][3] = lower_color[i][3] =
// (GLubyte)(sky_color[3] * 1.0);
for ( j = 0; j < 3; j++ ) {
outer_amt[j] += outer_diff[j];
middle_amt[j] += middle_diff[j];
}
/*
printf("upper_color[%d] = %.2f %.2f %.2f %.2f\n", i, upper_color[i][0],
upper_color[i][1], upper_color[i][2], upper_color[i][3]);
printf("middle_color[%d] = %.2f %.2f %.2f %.2f\n", i,
middle_color[i][0], middle_color[i][1], middle_color[i][2],
middle_color[i][3]);
printf("lower_color[%d] = %.2f %.2f %.2f %.2f\n", i,
lower_color[i][0], lower_color[i][1], lower_color[i][2],
lower_color[i][3]);
*/
}
for ( i = 0; i < 12; i++ ) {
sgCopyVec3( bottom_color[i], fog_color );
}
//
// Second, assign the basic colors to the object color arrays
//
float *slot;
int counter;
// update the center disk color arrays
counter = 0;
slot = center_disk_cl->get( counter++ );
// sgVec3 red;
// sgSetVec3( red, 1.0, 0.0, 0.0 );
sgCopyVec3( slot, sky_color );
for ( i = 11; i >= 0; i-- ) {
slot = center_disk_cl->get( counter++ );
sgCopyVec3( slot, upper_color[i] );
}
slot = center_disk_cl->get( counter++ );
sgCopyVec3( slot, upper_color[11] );
// generate the upper ring
counter = 0;
for ( i = 0; i < 12; i++ ) {
slot = upper_ring_cl->get( counter++ );
sgCopyVec3( slot, middle_color[i] );
slot = upper_ring_cl->get( counter++ );
sgCopyVec3( slot, upper_color[i] );
}
slot = upper_ring_cl->get( counter++ );
sgCopyVec3( slot, middle_color[0] );
slot = upper_ring_cl->get( counter++ );
sgCopyVec3( slot, upper_color[0] );
// generate middle ring
counter = 0;
for ( i = 0; i < 12; i++ ) {
slot = middle_ring_cl->get( counter++ );
sgCopyVec3( slot, lower_color[i] );
slot = middle_ring_cl->get( counter++ );
sgCopyVec3( slot, middle_color[i] );
}
slot = middle_ring_cl->get( counter++ );
sgCopyVec3( slot, lower_color[0] );
slot = middle_ring_cl->get( counter++ );
sgCopyVec3( slot, middle_color[0] );
// generate lower ring
counter = 0;
for ( i = 0; i < 12; i++ ) {
slot = lower_ring_cl->get( counter++ );
sgCopyVec3( slot, bottom_color[i] );
slot = lower_ring_cl->get( counter++ );
sgCopyVec3( slot, lower_color[i] );
}
slot = lower_ring_cl->get( counter++ );
sgCopyVec3( slot, bottom_color[0] );
slot = lower_ring_cl->get( counter++ );
sgCopyVec3( slot, lower_color[0] );
return true;
}
// reposition the sky at the specified origin and orientation
// lon specifies a rotation about the Z axis
// lat specifies a rotation about the new Y axis
// spin specifies a rotation about the new Z axis (and orients the
// sunrise/set effects
bool FGSkyDome::reposition( sgVec3 p, double lon, double lat, double spin ) {
sgMat4 T, LON, LAT, SPIN;
sgVec3 axis;
// Translate to view position
// Point3D zero_elev = current_view.get_cur_zero_elev();
// xglTranslatef( zero_elev.x(), zero_elev.y(), zero_elev.z() );
sgMakeTransMat4( T, p );
// printf(" Translated to %.2f %.2f %.2f\n",
// zero_elev.x, zero_elev.y, zero_elev.z );
// Rotate to proper orientation
// printf(" lon = %.2f lat = %.2f\n", FG_Longitude * RAD_TO_DEG,
// FG_Latitude * RAD_TO_DEG);
// xglRotatef( f->get_Longitude() * RAD_TO_DEG, 0.0, 0.0, 1.0 );
sgSetVec3( axis, 0.0, 0.0, 1.0 );
sgMakeRotMat4( LON, lon * RAD_TO_DEG, axis );
// xglRotatef( 90.0 - f->get_Latitude() * RAD_TO_DEG, 0.0, 1.0, 0.0 );
sgSetVec3( axis, 0.0, 1.0, 0.0 );
sgMakeRotMat4( LAT, 90.0 - lat * RAD_TO_DEG, axis );
// xglRotatef( l->sun_rotation * RAD_TO_DEG, 0.0, 0.0, 1.0 );
sgSetVec3( axis, 0.0, 0.0, 1.0 );
sgMakeRotMat4( SPIN, spin * RAD_TO_DEG, axis );
sgMat4 TRANSFORM;
sgCopyMat4( TRANSFORM, T );
sgPreMultMat4( TRANSFORM, LON );
sgPreMultMat4( TRANSFORM, LAT );
sgPreMultMat4( TRANSFORM, SPIN );
sgCoord skypos;
sgSetCoord( &skypos, TRANSFORM );
sky_transform->setTransform( &skypos );
return true;
}
#if 0
// depricated code from here to the end
// Calculate the sky structure vertices
void fgSkyVerticesInit() {
float theta;
int i;
FG_LOG(FG_ASTRO, FG_INFO, " Generating the sky dome vertices.");
for ( i = 0; i < 12; i++ ) {
theta = (i * 30.0) * DEG_TO_RAD;
inner_vertex[i][0] = cos(theta) * UPPER_RADIUS;
inner_vertex[i][1] = sin(theta) * UPPER_RADIUS;
inner_vertex[i][2] = UPPER_ELEV;
// printf(" %.2f %.2f\n", cos(theta) * UPPER_RADIUS,
// sin(theta) * UPPER_RADIUS);
middle_vertex[i][0] = cos((double)theta) * MIDDLE_RADIUS;
middle_vertex[i][1] = sin((double)theta) * MIDDLE_RADIUS;
middle_vertex[i][2] = MIDDLE_ELEV;
outer_vertex[i][0] = cos((double)theta) * LOWER_RADIUS;
outer_vertex[i][1] = sin((double)theta) * LOWER_RADIUS;
outer_vertex[i][2] = LOWER_ELEV;
bottom_vertex[i][0] = cos((double)theta) * BOTTOM_RADIUS;
bottom_vertex[i][1] = sin((double)theta) * BOTTOM_RADIUS;
bottom_vertex[i][2] = BOTTOM_ELEV;
}
}
// (Re)calculate the sky colors at each vertex
void fgSkyColorsInit() {
fgLIGHT *l;
double sun_angle, diff;
double outer_param[3], outer_amt[3], outer_diff[3];
double middle_param[3], middle_amt[3], middle_diff[3];
int i, j;
l = &cur_light_params;
FG_LOG( FG_ASTRO, FG_INFO,
" Generating the sky colors for each vertex." );
// setup for the possibility of sunset effects
sun_angle = l->sun_angle * RAD_TO_DEG;
// fgPrintf( FG_ASTRO, FG_INFO,
// " Sun angle in degrees = %.2f\n", sun_angle);
if ( (sun_angle > 80.0) && (sun_angle < 100.0) ) {
// 0.0 - 0.4
outer_param[0] = (10.0 - fabs(90.0 - sun_angle)) / 20.0;
outer_param[1] = (10.0 - fabs(90.0 - sun_angle)) / 40.0;
outer_param[2] = -(10.0 - fabs(90.0 - sun_angle)) / 30.0;
// outer_param[2] = 0.0;
middle_param[0] = (10.0 - fabs(90.0 - sun_angle)) / 40.0;
middle_param[1] = (10.0 - fabs(90.0 - sun_angle)) / 80.0;
middle_param[2] = 0.0;
outer_diff[0] = outer_param[0] / 6.0;
outer_diff[1] = outer_param[1] / 6.0;
outer_diff[2] = outer_param[2] / 6.0;
middle_diff[0] = middle_param[0] / 6.0;
middle_diff[1] = middle_param[1] / 6.0;
middle_diff[2] = middle_param[2] / 6.0;
} else {
outer_param[0] = outer_param[1] = outer_param[2] = 0.0;
middle_param[0] = middle_param[1] = middle_param[2] = 0.0;
outer_diff[0] = outer_diff[1] = outer_diff[2] = 0.0;
middle_diff[0] = middle_diff[1] = middle_diff[2] = 0.0;
}
// printf(" outer_red_param = %.2f outer_red_diff = %.2f\n",
// outer_red_param, outer_red_diff);
// calculate transition colors between sky and fog
for ( j = 0; j < 3; j++ ) {
outer_amt[j] = outer_param[j];
middle_amt[j] = middle_param[j];
}
for ( i = 0; i < 6; i++ ) {
for ( j = 0; j < 3; j++ ) {
diff = l->sky_color[j] - l->fog_color[j];
// printf("sky = %.2f fog = %.2f diff = %.2f\n",
// l->sky_color[j], l->fog_color[j], diff);
upper_color[i][j] = (GLubyte)((l->sky_color[j] - diff * 0.3) * 255);
middle_color[i][j] = (GLubyte)((l->sky_color[j] - diff * 0.9
+ middle_amt[j]) * 255);
lower_color[i][j] = (GLubyte)((l->fog_color[j] + outer_amt[j])
* 255);
if ( upper_color[i][j] > 255 ) { upper_color[i][j] = 255; }
if ( upper_color[i][j] < 25 ) { upper_color[i][j] = 25; }
if ( middle_color[i][j] > 255 ) { middle_color[i][j] = 255; }
if ( middle_color[i][j] < 25 ) { middle_color[i][j] = 25; }
if ( lower_color[i][j] > 255 ) { lower_color[i][j] = 255; }
if ( lower_color[i][j] < 25 ) { lower_color[i][j] = 25; }
}
upper_color[i][3] = middle_color[i][3] = lower_color[i][3] =
(GLubyte)(l->sky_color[3] * 255);
for ( j = 0; j < 3; j++ ) {
outer_amt[j] -= outer_diff[j];
middle_amt[j] -= middle_diff[j];
}
/*
printf("upper_color[%d] = %.2f %.2f %.2f %.2f\n", i, upper_color[i][0],
upper_color[i][1], upper_color[i][2], upper_color[i][3]);
printf("middle_color[%d] = %.2f %.2f %.2f %.2f\n", i,
middle_color[i][0], middle_color[i][1], middle_color[i][2],
middle_color[i][3]);
printf("lower_color[%d] = %.2f %.2f %.2f %.2f\n", i,
lower_color[i][0], lower_color[i][1], lower_color[i][2],
lower_color[i][3]);
*/
}
for ( j = 0; j < 3; j++ ) {
outer_amt[j] = 0.0;
middle_amt[j] = 0.0;
}
for ( i = 6; i < 12; i++ ) {
for ( j = 0; j < 3; j++ ) {
diff = l->sky_color[j] - l->fog_color[j];
// printf("sky = %.2f fog = %.2f diff = %.2f\n",
// l->sky_color[j], l->fog_color[j], diff);
upper_color[i][j] = (GLubyte)((l->sky_color[j] - diff * 0.3) * 255);
middle_color[i][j] = (GLubyte)((l->sky_color[j] - diff * 0.9
+ middle_amt[j]) * 255);
lower_color[i][j] = (GLubyte)((l->fog_color[j] + outer_amt[j])
* 255);
if ( upper_color[i][j] > 255 ) { upper_color[i][j] = 255; }
if ( upper_color[i][j] < 25 ) { upper_color[i][j] = 25; }
if ( middle_color[i][j] > 255 ) { middle_color[i][j] = 255; }
if ( middle_color[i][j] < 25 ) { middle_color[i][j] = 25; }
if ( lower_color[i][j] > 255 ) { lower_color[i][j] = 255; }
if ( lower_color[i][j] < 35 ) { lower_color[i][j] = 35; }
}
upper_color[i][3] = middle_color[i][3] = lower_color[i][3] =
(GLubyte)(l->sky_color[3] * 255);
for ( j = 0; j < 3; j++ ) {
outer_amt[j] += outer_diff[j];
middle_amt[j] += middle_diff[j];
}
/*
printf("upper_color[%d] = %.2f %.2f %.2f %.2f\n", i, upper_color[i][0],
upper_color[i][1], upper_color[i][2], upper_color[i][3]);
printf("middle_color[%d] = %.2f %.2f %.2f %.2f\n", i,
middle_color[i][0], middle_color[i][1], middle_color[i][2],
middle_color[i][3]);
printf("lower_color[%d] = %.2f %.2f %.2f %.2f\n", i,
lower_color[i][0], lower_color[i][1], lower_color[i][2],
lower_color[i][3]);
*/
}
}
// Initialize the sky structure and colors
void fgSkyInit() {
FG_LOG( FG_ASTRO, FG_INFO, "Initializing the sky" );
fgSkyVerticesInit();
// regester fgSkyColorsInit() as an event to be run periodically
global_events.Register( "fgSkyColorsInit()", fgSkyColorsInit,
fgEVENT::FG_EVENT_READY, 30000);
}
// Draw the Sky
void fgSkyRender() {
FGInterface *f;
fgLIGHT *l;
GLubyte sky_color[4];
GLubyte upper_color[4];
GLubyte middle_color[4];
GLubyte lower_color[4];
double diff;
int i;
f = current_aircraft.fdm_state;
l = &cur_light_params;
// printf("Rendering the sky.\n");
// calculate the proper colors
for ( i = 0; i < 3; i++ ) {
diff = l->sky_color[i] - l->adj_fog_color[i];
// printf("sky = %.2f fog = %.2f diff = %.2f\n",
// l->sky_color[j], l->adj_fog_color[j], diff);
upper_color[i] = (GLubyte)((l->sky_color[i] - diff * 0.3) * 255);
middle_color[i] = (GLubyte)((l->sky_color[i] - diff * 0.9) * 255);
lower_color[i] = (GLubyte)(l->adj_fog_color[i] * 255);
}
upper_color[3] = middle_color[3] = lower_color[3] =
(GLubyte)(l->adj_fog_color[3] * 255);
xglPushMatrix();
// Translate to view position
Point3D zero_elev = current_view.get_cur_zero_elev();
xglTranslatef( zero_elev.x(), zero_elev.y(), zero_elev.z() );
// printf(" Translated to %.2f %.2f %.2f\n",
// zero_elev.x, zero_elev.y, zero_elev.z );
// Rotate to proper orientation
// printf(" lon = %.2f lat = %.2f\n", FG_Longitude * RAD_TO_DEG,
// FG_Latitude * RAD_TO_DEG);
xglRotatef( f->get_Longitude() * RAD_TO_DEG, 0.0, 0.0, 1.0 );
xglRotatef( 90.0 - f->get_Latitude() * RAD_TO_DEG, 0.0, 1.0, 0.0 );
xglRotatef( l->sun_rotation * RAD_TO_DEG, 0.0, 0.0, 1.0 );
// Draw inner/center section of sky*/
xglBegin( GL_TRIANGLE_FAN );
for ( i = 0; i < 4; i++ ) {
sky_color[i] = (GLubyte)(l->sky_color[i] * 255);
}
xglColor4fv(l->sky_color);
xglVertex3f(0.0, 0.0, CENTER_ELEV);
for ( i = 11; i >= 0; i-- ) {
xglColor4ubv( upper_color );
xglVertex3fv( inner_vertex[i] );
}
xglColor4ubv( upper_color );
xglVertex3fv( inner_vertex[11] );
xglEnd();
// Draw the middle ring
xglBegin( GL_TRIANGLE_STRIP );
for ( i = 0; i < 12; i++ ) {
xglColor4ubv( middle_color );
// printf("middle_color[%d] = %.2f %.2f %.2f %.2f\n", i,
// middle_color[i][0], middle_color[i][1], middle_color[i][2],
// middle_color[i][3]);
// xglColor4f(1.0, 0.0, 0.0, 1.0);
xglVertex3fv( middle_vertex[i] );
xglColor4ubv( upper_color );
// printf("upper_color[%d] = %.2f %.2f %.2f %.2f\n", i,
// upper_color[i][0], upper_color[i][1], upper_color[i][2],
// upper_color[i][3]);
// xglColor4f(0.0, 0.0, 1.0, 1.0);
xglVertex3fv( inner_vertex[i] );
}
xglColor4ubv( middle_color );
// xglColor4f(1.0, 0.0, 0.0, 1.0);
xglVertex3fv( middle_vertex[0] );
xglColor4ubv( upper_color );
// xglColor4f(0.0, 0.0, 1.0, 1.0);
xglVertex3fv( inner_vertex[0] );
xglEnd();
// Draw the outer ring
xglBegin( GL_TRIANGLE_STRIP );
for ( i = 0; i < 12; i++ ) {
xglColor4ubv( lower_color );
xglVertex3fv( outer_vertex[i] );
xglColor4ubv( middle_color );
xglVertex3fv( middle_vertex[i] );
}
xglColor4ubv( lower_color );
xglVertex3fv( outer_vertex[0] );
xglColor4ubv( middle_color );
xglVertex3fv( middle_vertex[0] );
xglEnd();
// Draw the bottom skirt
xglBegin( GL_TRIANGLE_STRIP );
xglColor4ubv( lower_color );
for ( i = 0; i < 12; i++ ) {
xglVertex3fv( bottom_vertex[i] );
xglVertex3fv( outer_vertex[i] );
}
xglVertex3fv( bottom_vertex[0] );
xglVertex3fv( outer_vertex[0] );
xglEnd();
xglPopMatrix();
}
#endif

View File

@ -1,109 +0,0 @@
// skydome.hxx -- model sky with an upside down "bowl"
//
// Written by Curtis Olson, started December 1997.
// SSG-ified by Curtis Olson, February 2000.
//
// Copyright (C) 1997-2000 Curtis L. Olson - curt@flightgear.org
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
//
// $Id$
#ifndef _SKYDOME_HXX
#define _SKYDOME_HXX
#ifndef __cplusplus
# error This library requires C++
#endif
#include <plib/ssg.h> // plib include
class FGSkyDome {
ssgSelector *sky_selector;
ssgTransform *sky_transform;
ssgSimpleState *sky_state;
ssgVertexArray *center_disk_vl;
ssgColourArray *center_disk_cl;
ssgVertexArray *upper_ring_vl;
ssgColourArray *upper_ring_cl;
ssgVertexArray *middle_ring_vl;
ssgColourArray *middle_ring_cl;
ssgVertexArray *lower_ring_vl;
ssgColourArray *lower_ring_cl;
public:
// Constructor
FGSkyDome( void );
// Destructor
~FGSkyDome( void );
// initialize the sky object and connect it into the scene graph
// as a kid to to the specified root
bool initialize( ssgRoot *branch );
// repaint the sky colors based on current value of sun_angle,
// sky, and fog colors. This updates the color arrays for
// ssgVtxTable.
// sun angle in degrees relative to verticle
// 0 degrees = high noon
// 90 degrees = sun rise/set
// 180 degrees = darkest midnight
bool repaint( sgVec3 sky_color, sgVec3 fog_color, double sun_angle );
// reposition the sky at the specified origin and orientation
// lon specifies a rotation about the Z axis
// lat specifies a rotation about the new Y axis
// spin specifies a rotation about the new Z axis (and orients the
// sunrise/set effects
bool reposition( sgVec3 p, double lon, double lat, double spin );
// enable the sky in the scene graph (default)
void enable() { sky_selector->select( 1 ); }
// disable the sky in the scene graph. The leaf node is still
// there, how ever it won't be traversed on the cullandrender
// phase.
void disable() { sky_selector->select( 0 ); }
};
extern FGSkyDome current_sky;
// (Re)generate the display list
// void fgSkyInit();
// (Re)calculate the sky colors at each vertex
// void fgSkyColorsInit();
// Draw the Sky
// void fgSkyRender();
#endif // _SKYDOM_HXX

View File

@ -141,7 +141,7 @@ void SolarSystem::rebuild()
earthsMoon->newImage();
// Step 2b: Add the sun
ourSun->newImage();
// ourSun->newImage();
// Step 2c: Add the planets
xglBegin(GL_POINTS);
mercury->getPos(&ra, &dec, &magnitude);addPlanetToList(ra, dec, magnitude);

View File

@ -45,56 +45,38 @@
* problems on sun systems
************************************************************************/
Star::Star(FGTime *t) :
CelestialBody (0.000000, 0.0000000000,
0.0000, 0.00000,
282.9404, 4.7093500E-5,
1.0000000, 0.000000,
0.016709, -1.151E-9,
356.0470, 0.98560025850, t)
CelestialBody (0.000000, 0.0000000000,
0.0000, 0.00000,
282.9404, 4.7093500E-5,
1.0000000, 0.000000,
0.016709, -1.151E-9,
356.0470, 0.98560025850, t)
{
FG_LOG( FG_GENERAL, FG_INFO, "Initializing Sun Texture");
#ifdef GL_VERSION_1_1
xglGenTextures(1, &sun_texid);
xglBindTexture(GL_TEXTURE_2D, sun_texid);
#elif GL_EXT_texture_object
xglGenTexturesEXT(1, &sun_texid);
xglBindTextureEXT(GL_TEXTURE_2D, sun_texid);
#else
# error port me
#endif
distance = 0.0;
}
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
setTexture();
glTexImage2D( GL_TEXTURE_2D,
0,
GL_RGBA,
256, 256,
0,
GL_RGBA, GL_UNSIGNED_BYTE,
sun_texbuf);
SunObject = gluNewQuadric();
if(SunObject == NULL)
{
printf("gluNewQuadric(SunObject) failed !\n");
exit(0);
}
//SunList = 0;
distance = 0.0;
Star::Star() :
CelestialBody (0.000000, 0.0000000000,
0.0000, 0.00000,
282.9404, 4.7093500E-5,
1.0000000, 0.000000,
0.016709, -1.151E-9,
356.0470, 0.98560025850)
{
distance = 0.0;
}
Star::~Star()
{
#if 0
//delete SunObject;
delete [] sun_texbuf;
#endif
}
#if 0
static int texWidth = 256; /* 64x64 is plenty */
void Star::setTexture()
@ -142,6 +124,9 @@ void Star::setTexture()
// GL_UNSIGNED_BYTE, textureBuf);
//free(textureBuf);
}
#endif
/*************************************************************************
* void Jupiter::updatePosition(FGTime *t, Star *ourSun)
*
@ -184,7 +169,9 @@ void Star::updatePosition(FGTime *t)
rightAscension = atan2 (ye, xe);
declination = atan2 (ze, sqrt (xe*xe + ye*ye));
}
#if 0
void Star::newImage(void)
{
/*static float stars[3];
@ -268,3 +255,4 @@ void Star::newImage(void)
glDisable(GL_BLEND); // BLEND DISABLED
}
}
#endif

View File

@ -30,29 +30,30 @@
class Star : public CelestialBody
{
private:
//double longitude; // the sun's true longitude - this is depreciated by
// CelestialBody::lonEcl
double xs, ys; // the sun's rectangular geocentric coordinates
double distance; // the sun's distance to the earth
GLUquadricObj *SunObject;
GLuint sun_texid;
GLubyte *sun_texbuf;
void setTexture();
double xs, ys; // the sun's rectangular geocentric coordinates
double distance; // the sun's distance to the earth
// GLUquadricObj *SunObject;
// GLuint sun_texid;
// GLubyte *sun_texbuf;
// void setTexture();
public:
Star (FGTime *t);
~Star();
void updatePosition(FGTime *t);
double getM();
double getw();
//double getLon();
double getxs();
double getys();
double getDistance();
void newImage();
};
Star (FGTime *t);
Star ();
~Star();
void updatePosition(FGTime *t);
double getM();
double getw();
//double getLon();
double getxs();
double getys();
double getDistance();
// void newImage();
};
inline double Star::getM()

View File

@ -79,10 +79,6 @@
// static GLubyte lower_color[12][4];
// Defined the shared sky object here
FGSkyDome current_sky;
// Constructor
FGSkyDome::FGSkyDome( void ) {
}

View File

@ -96,9 +96,6 @@ public:
};
extern FGSkyDome current_sky;
// (Re)generate the display list
// void fgSkyInit();

View File

@ -24,18 +24,11 @@
// $Id$
// #ifdef __BORLANDC__
// # define exception c_exception
// #endif
// #include <math.h>
// #include <simgear/debug/logstream.hxx>
// #include <Time/sunpos.hxx>
// #include <Time/light.hxx>
// #include <Main/options.hxx>
#include <plib/ssg.h>
#include <simgear/constants.h>
#include "sphere.hxx"
#include "skysun.hxx"
@ -51,151 +44,115 @@ FGSkySun::~FGSkySun( void ) {
// initialize the sun object and connect it into our scene graph root
bool FGSkySun::initialize() {
sgVec3 color;
float theta;
int i;
// create the scene graph for the dome
skysun = new ssgRoot;
skysun->setName( "Sky Sun" );
// set up the state
sun_state = new ssgSimpleState();
sun_state->setShadeModel( GL_SMOOTH );
sun_state->disable( GL_LIGHTING );
sun_state->disable( GL_DEPTH_TEST );
sun_state->disable( GL_CULL_FACE );
sun_state->disable( GL_TEXTURE_2D );
sun_state->disable( GL_COLOR_MATERIAL );
sun_state->setColourMaterial( GL_AMBIENT_AND_DIFFUSE );
orb_state = new ssgSimpleState();
orb_state->setShadeModel( GL_SMOOTH );
orb_state->disable( GL_LIGHTING );
orb_state->disable( GL_DEPTH_TEST );
orb_state->disable( GL_CULL_FACE );
orb_state->disable( GL_TEXTURE_2D );
orb_state->disable( GL_COLOR_MATERIAL );
orb_state->setMaterial( GL_AMBIENT_AND_DIFFUSE, 1.0, 1.0, 1.0, 1.0 );
// initially seed to all white
sgSetVec3( color, 1.0, 1.0, 1.0 );
ssgBranch *orb = ssgMakeSphere( orb_state, 550.0, 10, 10 );
// generate the raw vertex data
sgVec3 center_vertex;
sgVec3 upper_vertex[12];
sgVec3 middle_vertex[12];
sgVec3 lower_vertex[12];
sgVec3 bottom_vertex[12];
sgSetVec3( center_vertex, 0.0, 0.0, CENTER_ELEV );
for ( i = 0; i < 12; i++ ) {
theta = (i * 30.0) * DEG_TO_RAD;
sgSetVec3( upper_vertex[i],
cos(theta) * UPPER_RADIUS,
sin(theta) * UPPER_RADIUS,
UPPER_ELEV );
sgSetVec3( middle_vertex[i],
cos((double)theta) * MIDDLE_RADIUS,
sin((double)theta) * MIDDLE_RADIUS,
MIDDLE_ELEV );
sgSetVec3( lower_vertex[i],
cos((double)theta) * LOWER_RADIUS,
sin((double)theta) * LOWER_RADIUS,
LOWER_ELEV );
sgSetVec3( bottom_vertex[i],
cos((double)theta) * BOTTOM_RADIUS,
sin((double)theta) * BOTTOM_RADIUS,
BOTTOM_ELEV );
}
// generate the center disk vertex/color arrays
center_disk_vl->add( center_vertex );
center_disk_cl->add( color );
for ( i = 11; i >= 0; i-- ) {
center_disk_vl->add( upper_vertex[i] );
center_disk_cl->add( color );
}
center_disk_vl->add( upper_vertex[11] );
center_disk_cl->add( color );
// generate the upper ring
for ( i = 0; i < 12; i++ ) {
upper_ring_vl->add( middle_vertex[i] );
upper_ring_cl->add( color );
upper_ring_vl->add( upper_vertex[i] );
upper_ring_cl->add( color );
}
upper_ring_vl->add( middle_vertex[0] );
upper_ring_cl->add( color );
upper_ring_vl->add( upper_vertex[0] );
upper_ring_cl->add( color );
// generate middle ring
for ( i = 0; i < 12; i++ ) {
middle_ring_vl->add( lower_vertex[i] );
middle_ring_cl->add( color );
middle_ring_vl->add( middle_vertex[i] );
middle_ring_cl->add( color );
}
middle_ring_vl->add( lower_vertex[0] );
middle_ring_cl->add( color );
middle_ring_vl->add( middle_vertex[0] );
middle_ring_cl->add( color );
// generate lower ring
for ( i = 0; i < 12; i++ ) {
lower_ring_vl->add( bottom_vertex[i] );
lower_ring_cl->add( color );
lower_ring_vl->add( lower_vertex[i] );
lower_ring_cl->add( color );
}
lower_ring_vl->add( bottom_vertex[0] );
lower_ring_cl->add( color );
lower_ring_vl->add( lower_vertex[0] );
lower_ring_cl->add( color );
// force a repaint of the sky colors with ugly defaults
sgVec3 fog_color;
sgSetVec3( fog_color, 1.0, 1.0, 1.0 );
repaint( color, fog_color, 0.0 );
// force a repaint of the sun colors with arbitrary defaults
repaint( 0.0 );
// build the ssg scene graph sub tree for the sky and connected
// into the provide scene graph branch
dome_selector = new ssgSelector;
dome_transform = new ssgTransform;
sun_selector = new ssgSelector;
sun_transform = new ssgTransform;
ssgVtxTable *center_disk, *upper_ring, *middle_ring, *lower_ring;
// orb->setState( orb_state );
center_disk = new ssgVtxTable( GL_TRIANGLE_FAN,
center_disk_vl, NULL, NULL, center_disk_cl );
sun_transform->addKid( orb );
upper_ring = new ssgVtxTable( GL_TRIANGLE_STRIP,
upper_ring_vl, NULL, NULL, upper_ring_cl );
sun_selector->addKid( sun_transform );
sun_selector->clrTraversalMaskBits( SSGTRAV_HOT );
middle_ring = new ssgVtxTable( GL_TRIANGLE_STRIP,
middle_ring_vl, NULL, NULL, middle_ring_cl );
skysun->addKid( sun_selector );
lower_ring = new ssgVtxTable( GL_TRIANGLE_STRIP,
lower_ring_vl, NULL, NULL, lower_ring_cl );
return true;
}
center_disk->setState( dome_state );
upper_ring->setState( dome_state );
middle_ring->setState( dome_state );
lower_ring->setState( dome_state );
dome_transform->addKid( center_disk );
dome_transform->addKid( upper_ring );
dome_transform->addKid( middle_ring );
dome_transform->addKid( lower_ring );
// repaint the sun colors based on current value of sun_angle in
// degrees relative to verticle
// 0 degrees = high noon
// 90 degrees = sun rise/set
// 180 degrees = darkest midnight
bool FGSkySun::repaint( double sun_angle ) {
if ( sun_angle * RAD_TO_DEG < 100 ) {
// else sun is well below horizon (so no point in repainting it)
// x_10 = sun_angle^10
double x_10 = sun_angle * sun_angle * sun_angle * sun_angle * sun_angle
* sun_angle * sun_angle * sun_angle * sun_angle * sun_angle;
dome_selector->addKid( dome_transform );
dome_selector->clrTraversalMaskBits( SSGTRAV_HOT );
float ambient = (float)(0.4 * pow (1.1, - x_10 / 30.0));
if (ambient < 0.3) { ambient = 0.3; }
if (ambient > 1.0) { ambient = 1.0; }
dome->addKid( dome_selector );
sgVec3 color;
sgSetVec3( color,
(ambient * 6.0) - 1.0, // minimum value = 0.8
(ambient * 11.0) - 3.0, // minimum value = 0.3
(ambient * 12.0) - 3.6 // minimum value = 0.0
);
if (color[0] > 1.0) color[0] = 1.0;
if (color[1] > 1.0) color[1] = 1.0;
if (color[2] > 1.0) color[2] = 1.0;
orb_state->setMaterial( GL_AMBIENT_AND_DIFFUSE,
color[0], color[1], color[2], 1.0 );
}
return true;
}
// reposition the sun at the specified right ascension and declination
bool FGSkySun::reposition( double rightAscension, double declination ) {
sgMat4 T, RA, DEC;
sgVec3 axis;
sgVec3 v;
// xglRotatef(((RAD_TO_DEG * rightAscension)- 90.0), 0.0, 0.0, 1.0);
sgSetVec3( axis, 0.0, 0.0, 1.0 );
sgMakeRotMat4( RA, (rightAscension * RAD_TO_DEG) - 90.0, axis );
// xglRotatef((RAD_TO_DEG * declination), 1.0, 0.0, 0.0);
sgSetVec3( axis, 1.0, 0.0, 0.0 );
sgMakeRotMat4( DEC, declination * RAD_TO_DEG, axis );
// xglTranslatef(0,60000,0);
sgSetVec3( v, 0.0, 60000.0, 0.0 );
sgMakeTransMat4( T, v );
sgMat4 TRANSFORM;
sgCopyMat4( TRANSFORM, RA );
sgPreMultMat4( TRANSFORM, DEC );
sgPreMultMat4( TRANSFORM, T );
sgCoord skypos;
sgSetCoord( &skypos, TRANSFORM );
sun_transform->setTransform( &skypos );
return true;
}
// Draw the sun
bool FGSkySun::draw() {
ssgCullAndDraw( skysun );
return true;
}

View File

@ -38,7 +38,7 @@ class FGSkySun {
ssgSelector *sun_selector;
ssgTransform *sun_transform;
ssgSimpleState *sun_state;
ssgSimpleState *orb_state;
ssgSimpleState *halo_state;
public:
@ -58,7 +58,7 @@ public:
// 0 degrees = high noon
// 90 degrees = sun rise/set
// 180 degrees = darkest midnight
bool repaint( sgVec3 sky_color, sgVec3 fog_color, double sun_angle );
bool repaint( double sun_angle );
// reposition the sun at the specified right ascension and
// declination

View File

@ -26,7 +26,8 @@
// return a sphere object as an ssgBranch
ssgBranch *ssgMakeSphere( double radius, int slices, int stacks ) {
ssgBranch *ssgMakeSphere( ssgSimpleState *state, double radius, int slices,
int stacks ) {
float rho, drho, theta, dtheta;
float x, y, z;
float s, t, ds, dt;
@ -96,6 +97,7 @@ ssgBranch *ssgMakeSphere( double radius, int slices, int stacks ) {
ssgLeaf *slice =
new ssgVtxTable ( GL_TRIANGLE_STRIP, vl, nl, tl, NULL );
slice->setState( state );
sphere->addKid( slice );

View File

@ -25,5 +25,9 @@
#include <plib/ssg.h>
// return a sphere object as an ssgBranch
ssgBranch *ssgMakeSphere( double radius, int slices, int stacks );
// return a sphere object as an ssgBranch (and connect in the
// specified ssgSimpleState
ssgBranch *ssgMakeSphere( ssgSimpleState *state, double radius, int slices,
int stacks );