Added a spherical course & dist given two points routine.

This commit is contained in:
curt 2000-06-20 02:46:42 +00:00
parent c2b84db5a2
commit 242eceb1c6

View File

@ -30,6 +30,8 @@
#endif #endif
#include <math.h>
#include <simgear/constants.h> #include <simgear/constants.h>
#include <simgear/math/point3d.hxx> #include <simgear/math/point3d.hxx>
@ -66,7 +68,8 @@ inline Point3D fgCartToPolar3d(const Point3D& cp) {
// distance. NOTE: starting point is specifed in radians, distance is // distance. NOTE: starting point is specifed in radians, distance is
// specified in meters (and converted internally to radians) // specified in meters (and converted internally to radians)
// ... assumes a spherical world // ... assumes a spherical world
inline Point3D calc_lon_lat( const Point3D& orig, double course, double dist ) { inline Point3D calc_gc_lon_lat( const Point3D& orig, double course,
double dist ) {
Point3D result; Point3D result;
// lat=asin(sin(lat1)*cos(d)+cos(lat1)*sin(d)*cos(tc)) // lat=asin(sin(lat1)*cos(d)+cos(lat1)*sin(d)*cos(tc))
@ -96,6 +99,60 @@ inline Point3D calc_lon_lat( const Point3D& orig, double course, double dist ) {
} }
// calc course/dist
inline void calc_gc_course_dist( const Point3D& start, const Point3D& dest,
double *course, double *dist ) {
// d = 2*asin(sqrt((sin((lat1-lat2)/2))^2 +
// cos(lat1)*cos(lat2)*(sin((lon1-lon2)/2))^2))
double tmp1 = sin( (start.y() - dest.y()) / 2 );
double tmp2 = sin( (start.x() - dest.x()) / 2 );
double d = 2.0 * asin( sqrt( tmp1 * tmp1 +
cos(start.y()) * cos(dest.y()) * tmp2 * tmp2));
// We obtain the initial course, tc1, (at point 1) from point 1 to
// point 2 by the following. The formula fails if the initial
// point is a pole. We can special case this with:
//
// IF (cos(lat1) < EPS) // EPS a small number ~ machine precision
// IF (lat1 > 0)
// tc1= pi // starting from N pole
// ELSE
// tc1= 0 // starting from S pole
// ENDIF
// ENDIF
//
// For starting points other than the poles:
//
// IF sin(lon2-lon1)<0
// tc1=acos((sin(lat2)-sin(lat1)*cos(d))/(sin(d)*cos(lat1)))
// ELSE
// tc1=2*pi-acos((sin(lat2)-sin(lat1)*cos(d))/(sin(d)*cos(lat1)))
// ENDIF
double tc1;
if ( cos(start.y()) < FG_EPSILON ) {
// EPS a small number ~ machine precision
if ( start.y() > 0 ) {
tc1 = FG_PI; // starting from N pole
} else {
tc1 = 0; // starting from S pole
}
}
// For starting points other than the poles:
double tmp3 = sin(d)*cos(start.y());
double tmp4 = sin(dest.y())-sin(start.y())*cos(d);
double tmp5 = acos(tmp4/tmp3);
if ( sin( dest.x() - start.x() ) < 0 ) {
tc1 = tmp5;
} else {
tc1 = 2 * FG_PI - tmp5;
}
*course = tc1;
*dist = d * RAD_TO_NM * NM_TO_METER;
}
#endif // _POLAR_HXX #endif // _POLAR_HXX