simgear/3rdparty/udns/udns_resolver.c

1324 lines
41 KiB
C
Raw Normal View History

/* udns_resolver.c
resolver stuff (main module)
Copyright (C) 2005 Michael Tokarev <mjt@corpit.ru>
This file is part of UDNS library, an async DNS stub resolver.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library, in file named COPYING.LGPL; if not,
write to the Free Software Foundation, Inc., 59 Temple Place,
Suite 330, Boston, MA 02111-1307 USA
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#if defined(_WINDOWS) || defined(WINDOWS)
# include <winsock2.h> /* includes <windows.h> */
# include <ws2tcpip.h> /* needed for struct in6_addr */
#else
# include <sys/types.h>
# include <sys/socket.h>
# include <netinet/in.h>
# include <unistd.h>
# include <fcntl.h>
# include <sys/time.h>
# ifdef HAVE_POLL
# include <sys/poll.h>
# else
# ifdef HAVE_SYS_SELECT_H
# include <sys/select.h>
# endif
# endif
# ifdef HAVE_TIMES
# include <sys/times.h>
# endif
# define closesocket(sock) close(sock)
#endif /* !WINDOWS */
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <errno.h>
#include <assert.h>
#include <stddef.h>
#include "udns.h"
#ifndef EAFNOSUPPORT
# define EAFNOSUPPORT EINVAL
#endif
#ifndef MSG_DONTWAIT
# define MSG_DONTWAIT 0
#endif
struct dns_qlist {
struct dns_query *head, *tail;
};
struct dns_query {
struct dns_query *dnsq_next; /* double-linked list */
struct dns_query *dnsq_prev;
unsigned dnsq_origdnl0; /* original query DN len w/o last 0 */
unsigned dnsq_flags; /* control flags for this query */
unsigned dnsq_servi; /* index of next server to try */
unsigned dnsq_servwait; /* bitmask: servers left to wait */
unsigned dnsq_servskip; /* bitmask: servers to skip */
unsigned dnsq_servnEDNS0; /* bitmask: servers refusing EDNS0 */
unsigned dnsq_try; /* number of tries made so far */
dnscc_t *dnsq_nxtsrch; /* next search pointer @dnsc_srchbuf */
time_t dnsq_deadline; /* when current try will expire */
dns_parse_fn *dnsq_parse; /* parse: raw => application */
dns_query_fn *dnsq_cbck; /* the callback to call when done */
void *dnsq_cbdata; /* user data for the callback */
#ifndef NDEBUG
struct dns_ctx *dnsq_ctx; /* the resolver context */
#endif
/* char fields at the end to avoid padding */
dnsc_t dnsq_id[2]; /* query ID */
dnsc_t dnsq_typcls[4]; /* requested RR type+class */
dnsc_t dnsq_dn[DNS_MAXDN+DNS_DNPAD]; /* the query DN +alignment */
};
/* working with dns_query lists */
static __inline void qlist_init(struct dns_qlist *list) {
list->head = list->tail = NULL;
}
static __inline void qlist_remove(struct dns_qlist *list, struct dns_query *q) {
if (q->dnsq_prev) q->dnsq_prev->dnsq_next = q->dnsq_next;
else list->head = q->dnsq_next;
if (q->dnsq_next) q->dnsq_next->dnsq_prev = q->dnsq_prev;
else list->tail = q->dnsq_prev;
}
static __inline void
qlist_add_head(struct dns_qlist *list, struct dns_query *q) {
q->dnsq_next = list->head;
if (list->head) list->head->dnsq_prev = q;
else list->tail = q;
list->head = q;
q->dnsq_prev = NULL;
}
static __inline void
qlist_insert_after(struct dns_qlist *list,
struct dns_query *q, struct dns_query *prev) {
if ((q->dnsq_prev = prev) != NULL) {
if ((q->dnsq_next = prev->dnsq_next) != NULL)
q->dnsq_next->dnsq_prev = q;
else
list->tail = q;
prev->dnsq_next = q;
}
else
qlist_add_head(list, q);
}
union sockaddr_ns {
struct sockaddr sa;
struct sockaddr_in sin;
#ifdef HAVE_IPv6
struct sockaddr_in6 sin6;
#endif
};
#define sin_eq(a,b) \
((a).sin_port == (b).sin_port && \
(a).sin_addr.s_addr == (b).sin_addr.s_addr)
#define sin6_eq(a,b) \
((a).sin6_port == (b).sin6_port && \
memcmp(&(a).sin6_addr, &(b).sin6_addr, sizeof(struct in6_addr)) == 0)
struct dns_ctx { /* resolver context */
/* settings */
unsigned dnsc_flags; /* various flags */
unsigned dnsc_timeout; /* timeout (base value) for queries */
unsigned dnsc_ntries; /* number of retries */
unsigned dnsc_ndots; /* ndots to assume absolute name */
unsigned dnsc_port; /* default port (DNS_PORT) */
unsigned dnsc_udpbuf; /* size of UDP buffer */
/* array of nameserver addresses */
union sockaddr_ns dnsc_serv[DNS_MAXSERV];
unsigned dnsc_nserv; /* number of nameservers */
unsigned dnsc_salen; /* length of socket addresses */
dnsc_t dnsc_srchbuf[1024]; /* buffer for searchlist */
dnsc_t *dnsc_srchend; /* current end of srchbuf */
dns_utm_fn *dnsc_utmfn; /* register/cancel timer events */
void *dnsc_utmctx; /* user timer context for utmfn() */
time_t dnsc_utmexp; /* when user timer expires */
dns_dbgfn *dnsc_udbgfn; /* debugging function */
/* dynamic data */
struct udns_jranctx dnsc_jran; /* random number generator state */
unsigned dnsc_nextid; /* next queue ID to use if !0 */
int dnsc_udpsock; /* UDP socket */
struct dns_qlist dnsc_qactive; /* active list sorted by deadline */
int dnsc_nactive; /* number entries in dnsc_qactive */
dnsc_t *dnsc_pbuf; /* packet buffer (udpbuf size) */
int dnsc_qstatus; /* last query status value */
};
static const struct {
const char *name;
enum dns_opt opt;
unsigned offset;
unsigned min, max;
} dns_opts[] = {
#define opt(name,opt,field,min,max) \
{name,opt,offsetof(struct dns_ctx,field),min,max}
opt("retrans", DNS_OPT_TIMEOUT, dnsc_timeout, 1,300),
opt("timeout", DNS_OPT_TIMEOUT, dnsc_timeout, 1,300),
opt("retry", DNS_OPT_NTRIES, dnsc_ntries, 1,50),
opt("attempts", DNS_OPT_NTRIES, dnsc_ntries, 1,50),
opt("ndots", DNS_OPT_NDOTS, dnsc_ndots, 0,1000),
opt("port", DNS_OPT_PORT, dnsc_port, 1,0xffff),
opt("udpbuf", DNS_OPT_UDPSIZE, dnsc_udpbuf, DNS_MAXPACKET,65536),
#undef opt
};
#define dns_ctxopt(ctx,idx) (*((unsigned*)(((char*)ctx)+dns_opts[idx].offset)))
#define ISSPACE(x) (x == ' ' || x == '\t' || x == '\r' || x == '\n')
struct dns_ctx dns_defctx;
#define SETCTX(ctx) if (!ctx) ctx = &dns_defctx
#define SETCTXINITED(ctx) SETCTX(ctx); assert(CTXINITED(ctx))
#define CTXINITED(ctx) (ctx->dnsc_flags & DNS_INITED)
#define SETCTXFRESH(ctx) SETCTXINITED(ctx); assert(!CTXOPEN(ctx))
#define SETCTXINACTIVE(ctx) \
SETCTXINITED(ctx); assert(!ctx->dnsc_nactive)
#define SETCTXOPEN(ctx) SETCTXINITED(ctx); assert(CTXOPEN(ctx))
#define CTXOPEN(ctx) (ctx->dnsc_udpsock >= 0)
#if defined(NDEBUG) || !defined(DEBUG)
#define dns_assert_ctx(ctx)
#else
static void dns_assert_ctx(const struct dns_ctx *ctx) {
int nactive = 0;
const struct dns_query *q;
for(q = ctx->dnsc_qactive.head; q; q = q->dnsq_next) {
assert(q->dnsq_ctx == ctx);
assert(q == (q->dnsq_next ?
q->dnsq_next->dnsq_prev : ctx->dnsc_qactive.tail));
assert(q == (q->dnsq_prev ?
q->dnsq_prev->dnsq_next : ctx->dnsc_qactive.head));
++nactive;
}
assert(nactive == ctx->dnsc_nactive);
}
#endif
enum {
DNS_INTERNAL = 0xffff, /* internal flags mask */
DNS_INITED = 0x0001, /* the context is initialized */
DNS_ASIS_DONE = 0x0002, /* search: skip the last as-is query */
DNS_SEEN_NODATA = 0x0004, /* search: NODATA has been received */
};
int dns_add_serv(struct dns_ctx *ctx, const char *serv) {
union sockaddr_ns *sns;
SETCTXFRESH(ctx);
if (!serv)
return (ctx->dnsc_nserv = 0);
if (ctx->dnsc_nserv >= DNS_MAXSERV)
return errno = ENFILE, -1;
sns = &ctx->dnsc_serv[ctx->dnsc_nserv];
memset(sns, 0, sizeof(*sns));
if (dns_pton(AF_INET, serv, &sns->sin.sin_addr) > 0) {
sns->sin.sin_family = AF_INET;
return ++ctx->dnsc_nserv;
}
#ifdef HAVE_IPv6
if (dns_pton(AF_INET6, serv, &sns->sin6.sin6_addr) > 0) {
sns->sin6.sin6_family = AF_INET6;
return ++ctx->dnsc_nserv;
}
#endif
errno = EINVAL;
return -1;
}
int dns_add_serv_s(struct dns_ctx *ctx, const struct sockaddr *sa) {
SETCTXFRESH(ctx);
if (!sa)
return (ctx->dnsc_nserv = 0);
if (ctx->dnsc_nserv >= DNS_MAXSERV)
return errno = ENFILE, -1;
#ifdef HAVE_IPv6
else if (sa->sa_family == AF_INET6)
ctx->dnsc_serv[ctx->dnsc_nserv].sin6 = *(struct sockaddr_in6*)sa;
#endif
else if (sa->sa_family == AF_INET)
ctx->dnsc_serv[ctx->dnsc_nserv].sin = *(struct sockaddr_in*)sa;
else
return errno = EAFNOSUPPORT, -1;
return ++ctx->dnsc_nserv;
}
int dns_set_opts(struct dns_ctx *ctx, const char *opts) {
unsigned i, v;
int err = 0;
SETCTXINACTIVE(ctx);
for(;;) {
while(ISSPACE(*opts)) ++opts;
if (!*opts) break;
for(i = 0; ; ++i) {
if (i >= sizeof(dns_opts)/sizeof(dns_opts[0])) { ++err; break; }
v = strlen(dns_opts[i].name);
if (strncmp(dns_opts[i].name, opts, v) != 0 ||
(opts[v] != ':' && opts[v] != '='))
continue;
opts += v + 1;
v = 0;
if (*opts < '0' || *opts > '9') { ++err; break; }
do v = v * 10 + (*opts++ - '0');
while (*opts >= '0' && *opts <= '9');
if (v < dns_opts[i].min) v = dns_opts[i].min;
if (v > dns_opts[i].max) v = dns_opts[i].max;
dns_ctxopt(ctx, i) = v;
break;
}
while(*opts && !ISSPACE(*opts)) ++opts;
}
return err;
}
int dns_set_opt(struct dns_ctx *ctx, enum dns_opt opt, int val) {
int prev;
unsigned i;
SETCTXINACTIVE(ctx);
for(i = 0; i < sizeof(dns_opts)/sizeof(dns_opts[0]); ++i) {
if (dns_opts[i].opt != opt) continue;
prev = dns_ctxopt(ctx, i);
if (val >= 0) {
unsigned v = val;
if (v < dns_opts[i].min || v > dns_opts[i].max) {
errno = EINVAL;
return -1;
}
dns_ctxopt(ctx, i) = v;
}
return prev;
}
if (opt == DNS_OPT_FLAGS) {
prev = ctx->dnsc_flags & ~DNS_INTERNAL;
if (val >= 0)
ctx->dnsc_flags =
(ctx->dnsc_flags & DNS_INTERNAL) | (val & ~DNS_INTERNAL);
return prev;
}
errno = ENOSYS;
return -1;
}
int dns_add_srch(struct dns_ctx *ctx, const char *srch) {
int dnl;
SETCTXINACTIVE(ctx);
if (!srch) {
memset(ctx->dnsc_srchbuf, 0, sizeof(ctx->dnsc_srchbuf));
ctx->dnsc_srchend = ctx->dnsc_srchbuf;
return 0;
}
dnl =
sizeof(ctx->dnsc_srchbuf) - (ctx->dnsc_srchend - ctx->dnsc_srchbuf) - 1;
dnl = dns_sptodn(srch, ctx->dnsc_srchend, dnl);
if (dnl > 0)
ctx->dnsc_srchend += dnl;
ctx->dnsc_srchend[0] = '\0'; /* we ensure the list is always ends at . */
if (dnl > 0)
return 0;
errno = EINVAL;
return -1;
}
static void dns_drop_utm(struct dns_ctx *ctx) {
if (ctx->dnsc_utmfn)
ctx->dnsc_utmfn(NULL, -1, ctx->dnsc_utmctx);
ctx->dnsc_utmctx = NULL;
ctx->dnsc_utmexp = -1;
}
static void
_dns_request_utm(struct dns_ctx *ctx, time_t now) {
struct dns_query *q;
time_t deadline;
int timeout;
q = ctx->dnsc_qactive.head;
if (!q)
deadline = -1, timeout = -1;
else if (!now || q->dnsq_deadline <= now)
deadline = 0, timeout = 0;
else
deadline = q->dnsq_deadline, timeout = (int)(deadline - now);
if (ctx->dnsc_utmexp == deadline)
return;
ctx->dnsc_utmfn(ctx, timeout, ctx->dnsc_utmctx);
ctx->dnsc_utmexp = deadline;
}
static __inline void
dns_request_utm(struct dns_ctx *ctx, time_t now) {
if (ctx->dnsc_utmfn)
_dns_request_utm(ctx, now);
}
void dns_set_dbgfn(struct dns_ctx *ctx, dns_dbgfn *dbgfn) {
SETCTXINITED(ctx);
ctx->dnsc_udbgfn = dbgfn;
}
void
dns_set_tmcbck(struct dns_ctx *ctx, dns_utm_fn *fn, void *data) {
SETCTXINITED(ctx);
dns_drop_utm(ctx);
ctx->dnsc_utmfn = fn;
ctx->dnsc_utmctx = data;
if (CTXOPEN(ctx))
dns_request_utm(ctx, 0);
}
static unsigned dns_nonrandom_32(void) {
#if defined(_WINDOWS) || defined(WINDOWS)
FILETIME ft;
GetSystemTimeAsFileTime(&ft);
return ft.dwLowDateTime;
#else
struct timeval tv;
gettimeofday(&tv, NULL);
return tv.tv_usec;
#endif
}
/* This is historic deprecated API */
UDNS_API unsigned dns_random16(void);
unsigned dns_random16(void) {
unsigned x = dns_nonrandom_32();
return (x ^ (x >> 16)) & 0xffff;
}
static void dns_init_rng(struct dns_ctx *ctx) {
udns_jraninit(&ctx->dnsc_jran, dns_nonrandom_32());
ctx->dnsc_nextid = 0;
}
void dns_close(struct dns_ctx *ctx) {
struct dns_query *q, *p;
SETCTX(ctx);
if (CTXINITED(ctx)) {
if (ctx->dnsc_udpsock >= 0)
closesocket(ctx->dnsc_udpsock);
ctx->dnsc_udpsock = -1;
if (ctx->dnsc_pbuf)
free(ctx->dnsc_pbuf);
ctx->dnsc_pbuf = NULL;
q = ctx->dnsc_qactive.head;
while((p = q) != NULL) {
q = q->dnsq_next;
free(p);
}
qlist_init(&ctx->dnsc_qactive);
ctx->dnsc_nactive = 0;
dns_drop_utm(ctx);
}
}
void dns_reset(struct dns_ctx *ctx) {
SETCTX(ctx);
dns_close(ctx);
memset(ctx, 0, sizeof(*ctx));
ctx->dnsc_timeout = 4;
ctx->dnsc_ntries = 3;
ctx->dnsc_ndots = 1;
ctx->dnsc_udpbuf = DNS_EDNS0PACKET;
ctx->dnsc_port = DNS_PORT;
ctx->dnsc_udpsock = -1;
ctx->dnsc_srchend = ctx->dnsc_srchbuf;
qlist_init(&ctx->dnsc_qactive);
dns_init_rng(ctx);
ctx->dnsc_flags = DNS_INITED;
}
struct dns_ctx *dns_new(const struct dns_ctx *copy) {
struct dns_ctx *ctx;
SETCTXINITED(copy);
dns_assert_ctx(copy);
ctx = malloc(sizeof(*ctx));
if (!ctx)
return NULL;
*ctx = *copy;
ctx->dnsc_udpsock = -1;
qlist_init(&ctx->dnsc_qactive);
ctx->dnsc_nactive = 0;
ctx->dnsc_pbuf = NULL;
ctx->dnsc_qstatus = 0;
ctx->dnsc_srchend = ctx->dnsc_srchbuf +
(copy->dnsc_srchend - copy->dnsc_srchbuf);
ctx->dnsc_utmfn = NULL;
ctx->dnsc_utmctx = NULL;
dns_init_rng(ctx);
return ctx;
}
void dns_free(struct dns_ctx *ctx) {
assert(ctx != NULL && ctx != &dns_defctx);
dns_reset(ctx);
free(ctx);
}
int dns_open(struct dns_ctx *ctx) {
int sock;
unsigned i;
int port;
union sockaddr_ns *sns;
#ifdef HAVE_IPv6
unsigned have_inet6 = 0;
#endif
SETCTXINITED(ctx);
assert(!CTXOPEN(ctx));
port = htons((unsigned short)ctx->dnsc_port);
/* ensure we have at least one server */
if (!ctx->dnsc_nserv) {
sns = ctx->dnsc_serv;
sns->sin.sin_family = AF_INET;
sns->sin.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
ctx->dnsc_nserv = 1;
}
for (i = 0; i < ctx->dnsc_nserv; ++i) {
sns = &ctx->dnsc_serv[i];
/* set port for each sockaddr */
#ifdef HAVE_IPv6
if (sns->sa.sa_family == AF_INET6) {
if (!sns->sin6.sin6_port) sns->sin6.sin6_port = (unsigned short)port;
++have_inet6;
}
else
#endif
{
assert(sns->sa.sa_family == AF_INET);
if (!sns->sin.sin_port) sns->sin.sin_port = (unsigned short)port;
}
}
#ifdef HAVE_IPv6
if (have_inet6 && have_inet6 < ctx->dnsc_nserv) {
/* convert all IPv4 addresses to IPv6 V4MAPPED */
struct sockaddr_in6 sin6;
memset(&sin6, 0, sizeof(sin6));
sin6.sin6_family = AF_INET6;
/* V4MAPPED: ::ffff:1.2.3.4 */
sin6.sin6_addr.s6_addr[10] = 0xff;
sin6.sin6_addr.s6_addr[11] = 0xff;
for(i = 0; i < ctx->dnsc_nserv; ++i) {
sns = &ctx->dnsc_serv[i];
if (sns->sa.sa_family == AF_INET) {
sin6.sin6_port = sns->sin.sin_port;
memcpy(sin6.sin6_addr.s6_addr + 4*3, &sns->sin.sin_addr, 4);
sns->sin6 = sin6;
}
}
}
ctx->dnsc_salen = have_inet6 ?
sizeof(struct sockaddr_in6) : sizeof(struct sockaddr_in);
if (have_inet6)
sock = socket(PF_INET6, SOCK_DGRAM, IPPROTO_UDP);
else
sock = socket(PF_INET, SOCK_DGRAM, IPPROTO_UDP);
#else /* !HAVE_IPv6 */
sock = socket(PF_INET, SOCK_DGRAM, IPPROTO_UDP);
ctx->dnsc_salen = sizeof(struct sockaddr_in);
#endif /* HAVE_IPv6 */
if (sock < 0) {
ctx->dnsc_qstatus = DNS_E_TEMPFAIL;
return -1;
}
#if defined(_WINDOWS) || defined(WINDOWS)
{ unsigned long on = 1;
if (ioctlsocket(sock, FIONBIO, &on) == SOCKET_ERROR) {
closesocket(sock);
ctx->dnsc_qstatus = DNS_E_TEMPFAIL;
return -1;
}
}
#else /* !WINDOWS */
if (fcntl(sock, F_SETFL, fcntl(sock, F_GETFL) | O_NONBLOCK) < 0 ||
fcntl(sock, F_SETFD, FD_CLOEXEC) < 0) {
closesocket(sock);
ctx->dnsc_qstatus = DNS_E_TEMPFAIL;
return -1;
}
#endif /* WINDOWS */
/* allocate the packet buffer */
if ((ctx->dnsc_pbuf = malloc(ctx->dnsc_udpbuf)) == NULL) {
closesocket(sock);
ctx->dnsc_qstatus = DNS_E_NOMEM;
errno = ENOMEM;
return -1;
}
ctx->dnsc_udpsock = sock;
dns_request_utm(ctx, 0);
return sock;
}
int dns_sock(const struct dns_ctx *ctx) {
SETCTXINITED(ctx);
return ctx->dnsc_udpsock;
}
int dns_active(const struct dns_ctx *ctx) {
SETCTXINITED(ctx);
dns_assert_ctx(ctx);
return ctx->dnsc_nactive;
}
int dns_status(const struct dns_ctx *ctx) {
SETCTX(ctx);
return ctx->dnsc_qstatus;
}
void dns_setstatus(struct dns_ctx *ctx, int status) {
SETCTX(ctx);
ctx->dnsc_qstatus = status;
}
/* End the query: disconnect it from the active list, free it,
* and return the result to the caller.
*/
static void
dns_end_query(struct dns_ctx *ctx, struct dns_query *q,
int status, void *result) {
dns_query_fn *cbck = q->dnsq_cbck;
void *cbdata = q->dnsq_cbdata;
ctx->dnsc_qstatus = status;
assert((status < 0 && result == 0) || (status >= 0 && result != 0));
assert(cbck != 0); /*XXX callback may be NULL */
assert(ctx->dnsc_nactive > 0);
--ctx->dnsc_nactive;
qlist_remove(&ctx->dnsc_qactive, q);
/* force the query to be unconnected */
/*memset(q, 0, sizeof(*q));*/
#ifndef NDEBUG
q->dnsq_ctx = NULL;
#endif
free(q);
cbck(ctx, result, cbdata);
}
#define DNS_DBG(ctx, code, sa, slen, pkt, plen) \
do { \
if (ctx->dnsc_udbgfn) \
ctx->dnsc_udbgfn(code, (sa), slen, pkt, plen, 0, 0); \
} while(0)
#define DNS_DBGQ(ctx, q, code, sa, slen, pkt, plen) \
do { \
if (ctx->dnsc_udbgfn) \
ctx->dnsc_udbgfn(code, (sa), slen, pkt, plen, q, q->dnsq_cbdata); \
} while(0)
static void dns_newid(struct dns_ctx *ctx, struct dns_query *q) {
/* this is how we choose an identifier for a new query (qID).
* For now, it's just sequential number, incremented for every query, and
* thus obviously trivial to guess.
* There are two choices:
* a) use sequential numbers. It is plain insecure. In DNS, there are two
* places where random numbers are (or can) be used to increase security:
* random qID and random source port number. Without this randomness
* (udns uses fixed port for all queries), or when the randomness is weak,
* it's trivial to spoof query replies. With randomness however, it
* becomes a bit more difficult task. Too bad we only have 16 bits for
* our security, as qID is only two bytes. It isn't a security per se,
* to rely on those 16 bits - an attacker can just flood us with fake
* replies with all possible qIDs (only 65536 of them), and in this case,
* even if we'll use true random qIDs, we'll be in trouble (not protected
* against spoofing). Yes, this is only possible on a high-speed network
* (probably on the LAN only, since usually a border router for a LAN
* protects internal machines from packets with spoofed local addresses
* from outside, and usually a nameserver resides on LAN), but it's
* still very well possible to send us fake replies.
* In other words: there's nothing a DNS (stub) resolver can do against
* spoofing attacks, unless DNSSEC is in use, which helps here alot.
* Too bad that DNSSEC isn't widespread, so relying on it isn't an
* option in almost all cases...
* b) use random qID, based on some random-number generation mechanism.
* This way, we increase our protection a bit (see above - it's very weak
* still), but we also increase risk of qID reuse and matching late replies
* that comes to queries we've sent before against new queries. There are
* some more corner cases around that, as well - for example, normally,
* udns tries to find the query for a given reply by qID, *and* by
* verifying that the query DN and other parameters are also the same
* (so if the new query is against another domain name, old reply will
* be ignored automatically). But certain types of replies which we now
* handle - for example, FORMERR reply from servers which refuses to
* process EDNS0-enabled packets - comes without all the query parameters
* but the qID - so we're forced to use qID only when determining which
* query the given reply corresponds to. This makes us even more
* vulnerable to spoofing attacks, because an attacker don't even need to
* know which queries we perform to spoof the replies - he only needs to
* flood us with fake FORMERR "replies".
*
* That all to say: using sequential (or any other trivially guessable)
* numbers for qIDs is insecure, but the whole thing is inherently insecure
* as well, and this "extra weakness" that comes from weak qID choosing
* algorithm adds almost nothing to the underlying problem.
*
* It CAN NOT be made secure. Period. That's it.
* Unless we choose to implement DNSSEC, which is a whole different story.
* Forcing TCP mode makes it better, but who uses TCP for DNS anyway?
* (and it's hardly possible because of huge impact on the recursive
* nameservers).
*
* Note that ALL stub resolvers (again, unless they implement and enforce
* DNSSEC) suffers from this same problem.
*
* Here, I use a pseudo-random number generator for qIDs, instead of a
* simpler sequential IDs. This is _not_ more secure than sequential
* ID, but some found random IDs more enjoyeable for some reason. So
* here it goes.
*/
/* Use random number and check if it's unique.
* If it's not, try again up to 5 times.
*/
unsigned loop;
dnsc_t c0, c1;
for(loop = 0; loop < 5; ++loop) {
const struct dns_query *c;
if (!ctx->dnsc_nextid)
ctx->dnsc_nextid = udns_jranval(&ctx->dnsc_jran);
c0 = ctx->dnsc_nextid & 0xff;
c1 = (ctx->dnsc_nextid >> 8) & 0xff;
ctx->dnsc_nextid >>= 16;
for(c = ctx->dnsc_qactive.head; c; c = c->dnsq_next)
if (c->dnsq_id[0] == c0 && c->dnsq_id[1] == c1)
break; /* found such entry, try again */
if (!c)
break;
}
q->dnsq_id[0] = c0; q->dnsq_id[1] = c1;
/* reset all parameters relevant for previous query lifetime */
q->dnsq_try = 0;
q->dnsq_servi = 0;
/*XXX probably should keep dnsq_servnEDNS0 bits?
* See also comments in dns_ioevent() about FORMERR case */
q->dnsq_servwait = q->dnsq_servskip = q->dnsq_servnEDNS0 = 0;
}
/* Find next search suffix and fills in q->dnsq_dn.
* Return 0 if no more to try. */
static int dns_next_srch(struct dns_ctx *ctx, struct dns_query *q) {
unsigned dnl;
for(;;) {
if (q->dnsq_nxtsrch > ctx->dnsc_srchend)
return 0;
dnl = dns_dnlen(q->dnsq_nxtsrch);
if (dnl + q->dnsq_origdnl0 <= DNS_MAXDN &&
(*q->dnsq_nxtsrch || !(q->dnsq_flags & DNS_ASIS_DONE)))
break;
q->dnsq_nxtsrch += dnl;
}
memcpy(q->dnsq_dn + q->dnsq_origdnl0, q->dnsq_nxtsrch, dnl);
if (!*q->dnsq_nxtsrch)
q->dnsq_flags |= DNS_ASIS_DONE;
q->dnsq_nxtsrch += dnl;
dns_newid(ctx, q); /* new ID for new qDN */
return 1;
}
/* find the server to try for current iteration.
* Note that current dnsq_servi may point to a server we should skip --
* in that case advance to the next server.
* Return true if found, false if all tried.
*/
static int dns_find_serv(const struct dns_ctx *ctx, struct dns_query *q) {
while(q->dnsq_servi < ctx->dnsc_nserv) {
if (!(q->dnsq_servskip & (1 << q->dnsq_servi)))
return 1;
++q->dnsq_servi;
}
return 0;
}
/* format and send the query to a given server.
* In case of network problem (sendto() fails), return -1,
* else return 0.
*/
static int
dns_send_this(struct dns_ctx *ctx, struct dns_query *q,
unsigned servi, time_t now) {
unsigned qlen;
unsigned tries;
{ /* format the query buffer */
dnsc_t *p = ctx->dnsc_pbuf;
memset(p, 0, DNS_HSIZE);
if (!(q->dnsq_flags & DNS_NORD)) p[DNS_H_F1] |= DNS_HF1_RD;
if (q->dnsq_flags & DNS_AAONLY) p[DNS_H_F1] |= DNS_HF1_AA;
if (q->dnsq_flags & DNS_SET_CD) p[DNS_H_F2] |= DNS_HF2_CD;
p[DNS_H_QDCNT2] = 1;
memcpy(p + DNS_H_QID, q->dnsq_id, 2);
p = dns_payload(p);
/* copy query dn */
p += dns_dntodn(q->dnsq_dn, p, DNS_MAXDN);
/* query type and class */
memcpy(p, q->dnsq_typcls, 4); p += 4;
/* add EDNS0 record. DO flag requires it */
if (q->dnsq_flags & DNS_SET_DO ||
(ctx->dnsc_udpbuf > DNS_MAXPACKET &&
!(q->dnsq_servnEDNS0 & (1 << servi)))) {
*p++ = 0; /* empty (root) DN */
p = dns_put16(p, DNS_T_OPT);
p = dns_put16(p, ctx->dnsc_udpbuf);
/* EDNS0 RCODE & VERSION; rest of the TTL field; RDLEN */
memset(p, 0, 2+2+2);
if (q->dnsq_flags & DNS_SET_DO) p[2] |= DNS_EF1_DO;
p += 2+2+2;
ctx->dnsc_pbuf[DNS_H_ARCNT2] = 1;
}
qlen = p - ctx->dnsc_pbuf;
assert(qlen <= ctx->dnsc_udpbuf);
}
/* send the query */
tries = 10;
while (sendto(ctx->dnsc_udpsock, (void*)ctx->dnsc_pbuf, qlen, 0,
&ctx->dnsc_serv[servi].sa, ctx->dnsc_salen) < 0) {
/*XXX just ignore the sendto() error for now and try again.
* In the future, it may be possible to retrieve the error code
* and find which operation/query failed.
*XXX try the next server too? (if ENETUNREACH is returned immediately)
*/
if (--tries) continue;
/* if we can't send the query, fail it. */
dns_end_query(ctx, q, DNS_E_TEMPFAIL, 0);
return -1;
}
DNS_DBGQ(ctx, q, 1,
&ctx->dnsc_serv[servi].sa, sizeof(union sockaddr_ns),
ctx->dnsc_pbuf, qlen);
q->dnsq_servwait |= 1 << servi; /* expect reply from this ns */
q->dnsq_deadline = now +
(dns_find_serv(ctx, q) ? 1 : ctx->dnsc_timeout << q->dnsq_try);
/* move the query to the proper place, according to the new deadline */
qlist_remove(&ctx->dnsc_qactive, q);
{ /* insert from the tail */
struct dns_query *p;
for(p = ctx->dnsc_qactive.tail; p; p = p->dnsq_prev)
if (p->dnsq_deadline <= q->dnsq_deadline)
break;
qlist_insert_after(&ctx->dnsc_qactive, q, p);
}
return 0;
}
/* send the query out using next available server
* and add it to the active list, or, if no servers available,
* end it.
*/
static void
dns_send(struct dns_ctx *ctx, struct dns_query *q, time_t now) {
/* if we can't send the query, return TEMPFAIL even when searching:
* we can't be sure whenever the name we tried to search exists or not,
* so don't continue searching, or we may find the wrong name. */
if (!dns_find_serv(ctx, q)) {
/* no more servers in this iteration. Try the next cycle */
q->dnsq_servi = 0; /* reset */
q->dnsq_try++; /* next try */
if (q->dnsq_try >= ctx->dnsc_ntries ||
!dns_find_serv(ctx, q)) {
/* no more servers and tries, fail the query */
/* return TEMPFAIL even when searching: no more tries for this
* searchlist, and no single definitive reply (handled in dns_ioevent()
* in NOERROR or NXDOMAIN cases) => all nameservers failed to process
* current search list element, so we don't know whenever the name exists.
*/
dns_end_query(ctx, q, DNS_E_TEMPFAIL, 0);
return;
}
}
dns_send_this(ctx, q, q->dnsq_servi++, now);
}
static void dns_dummy_cb(struct dns_ctx *ctx, void *result, void *data) {
if (result) free(result);
data = ctx = 0; /* used */
}
/* The (only, main, real) query submission routine.
* Allocate new query structure, initialize it, check validity of
* parameters, and add it to the head of the active list, without
* trying to send it (to be picked up on next event).
* Error return (without calling the callback routine) -
* no memory or wrong parameters.
*XXX The `no memory' case probably should go to the callback anyway...
*/
struct dns_query *
dns_submit_dn(struct dns_ctx *ctx,
dnscc_t *dn, int qcls, int qtyp, int flags,
dns_parse_fn *parse, dns_query_fn *cbck, void *data) {
struct dns_query *q;
SETCTXOPEN(ctx);
dns_assert_ctx(ctx);
q = calloc(sizeof(*q), 1);
if (!q) {
ctx->dnsc_qstatus = DNS_E_NOMEM;
return NULL;
}
#ifndef NDEBUG
q->dnsq_ctx = ctx;
#endif
q->dnsq_parse = parse;
q->dnsq_cbck = cbck ? cbck : dns_dummy_cb;
q->dnsq_cbdata = data;
q->dnsq_origdnl0 = dns_dntodn(dn, q->dnsq_dn, sizeof(q->dnsq_dn));
assert(q->dnsq_origdnl0 > 0);
--q->dnsq_origdnl0; /* w/o the trailing 0 */
dns_put16(q->dnsq_typcls+0, qtyp);
dns_put16(q->dnsq_typcls+2, qcls);
q->dnsq_flags = (flags | ctx->dnsc_flags) & ~DNS_INTERNAL;
if (flags & DNS_NOSRCH ||
dns_dnlabels(q->dnsq_dn) > ctx->dnsc_ndots) {
q->dnsq_nxtsrch = flags & DNS_NOSRCH ?
ctx->dnsc_srchend /* end of the search list if no search requested */ :
ctx->dnsc_srchbuf /* beginning of the list, but try as-is first */;
q->dnsq_flags |= DNS_ASIS_DONE;
dns_newid(ctx, q);
}
else {
q->dnsq_nxtsrch = ctx->dnsc_srchbuf;
dns_next_srch(ctx, q);
}
/* q->dnsq_deadline is set to 0 (calloc above): the new query is
* "already expired" when first inserted into queue, so it's safe
* to insert it into the head of the list. Next call to dns_timeouts()
* will actually send it.
*/
qlist_add_head(&ctx->dnsc_qactive, q);
++ctx->dnsc_nactive;
dns_request_utm(ctx, 0);
return q;
}
struct dns_query *
dns_submit_p(struct dns_ctx *ctx,
const char *name, int qcls, int qtyp, int flags,
dns_parse_fn *parse, dns_query_fn *cbck, void *data) {
int isabs;
SETCTXOPEN(ctx);
if (dns_ptodn(name, 0, ctx->dnsc_pbuf, DNS_MAXDN, &isabs) <= 0) {
ctx->dnsc_qstatus = DNS_E_BADQUERY;
return NULL;
}
if (isabs)
flags |= DNS_NOSRCH;
return
dns_submit_dn(ctx, ctx->dnsc_pbuf, qcls, qtyp, flags, parse, cbck, data);
}
/* process readable fd condition.
* To be usable in edge-triggered environment, the routine
* should consume all input so it should loop over.
* Note it isn't really necessary to loop here, because
* an application may perform the loop just fine by it's own,
* but in this case we should return some sensitive result,
* to indicate when to stop calling and error conditions.
* Note also we may encounter all sorts of recvfrom()
* errors which aren't fatal, and at the same time we may
* loop forever if an error IS fatal.
*/
void dns_ioevent(struct dns_ctx *ctx, time_t now) {
int r;
unsigned servi;
struct dns_query *q;
dnsc_t *pbuf;
dnscc_t *pend, *pcur;
void *result;
union sockaddr_ns sns;
socklen_t slen;
SETCTX(ctx);
if (!CTXOPEN(ctx))
return;
dns_assert_ctx(ctx);
pbuf = ctx->dnsc_pbuf;
if (!now) now = time(NULL);
again: /* receive the reply */
slen = sizeof(sns);
r = recvfrom(ctx->dnsc_udpsock, (void*)pbuf, ctx->dnsc_udpbuf,
MSG_DONTWAIT, &sns.sa, &slen);
if (r < 0) {
/*XXX just ignore recvfrom() errors for now.
* in the future it may be possible to determine which
* query failed and requeue it.
* Note there may be various error conditions, triggered
* by both local problems and remote problems. It isn't
* quite trivial to determine whenever an error is local
* or remote. On local errors, we should stop, while
* remote errors should be ignored (for now anyway).
*/
#if defined(_WINDOWS) || defined(WINDOWS)
if (WSAGetLastError() == WSAEWOULDBLOCK)
#else
if (errno == EAGAIN)
#endif
{
dns_request_utm(ctx, now);
return;
}
goto again;
}
pend = pbuf + r;
pcur = dns_payload(pbuf);
/* check reply header */
if (pcur > pend || dns_numqd(pbuf) > 1 || dns_opcode(pbuf) != 0) {
DNS_DBG(ctx, -1/*bad reply*/, &sns.sa, slen, pbuf, r);
goto again;
}
/* find the matching query, by qID */
for (q = ctx->dnsc_qactive.head; ; q = q->dnsq_next) {
if (!q) {
/* no more requests: old reply? */
DNS_DBG(ctx, -5/*no matching query*/, &sns.sa, slen, pbuf, r);
goto again;
}
if (pbuf[DNS_H_QID1] == q->dnsq_id[0] &&
pbuf[DNS_H_QID2] == q->dnsq_id[1])
break;
}
/* if we have numqd, compare with our query qDN */
if (dns_numqd(pbuf)) {
/* decode the qDN */
dnsc_t dn[DNS_MAXDN];
if (dns_getdn(pbuf, &pcur, pend, dn, sizeof(dn)) < 0 ||
pcur + 4 > pend) {
DNS_DBG(ctx, -1/*bad reply*/, &sns.sa, slen, pbuf, r);
goto again;
}
if (!dns_dnequal(dn, q->dnsq_dn) ||
memcmp(pcur, q->dnsq_typcls, 4) != 0) {
/* not this query */
DNS_DBG(ctx, -5/*no matching query*/, &sns.sa, slen, pbuf, r);
goto again;
}
/* here, query match, and pcur points past qDN in query section in pbuf */
}
/* if no numqd, we only allow FORMERR rcode */
else if (dns_rcode(pbuf) != DNS_R_FORMERR) {
/* treat it as bad reply if !FORMERR */
DNS_DBG(ctx, -1/*bad reply*/, &sns.sa, slen, pbuf, r);
goto again;
}
else {
/* else it's FORMERR, handled below */
}
/* find server */
#ifdef HAVE_IPv6
if (sns.sa.sa_family == AF_INET6 && slen >= sizeof(sns.sin6)) {
for(servi = 0; servi < ctx->dnsc_nserv; ++servi)
if (sin6_eq(ctx->dnsc_serv[servi].sin6, sns.sin6))
break;
}
else
#endif
if (sns.sa.sa_family == AF_INET && slen >= sizeof(sns.sin)) {
for(servi = 0; servi < ctx->dnsc_nserv; ++servi)
if (sin_eq(ctx->dnsc_serv[servi].sin, sns.sin))
break;
}
else
servi = ctx->dnsc_nserv;
/* check if we expect reply from this server.
* Note we can receive reply from first try if we're already at next */
if (!(q->dnsq_servwait & (1 << servi))) { /* if ever asked this NS */
DNS_DBG(ctx, -2/*wrong server*/, &sns.sa, slen, pbuf, r);
goto again;
}
/* we got (some) reply for our query */
DNS_DBGQ(ctx, q, 0, &sns.sa, slen, pbuf, r);
q->dnsq_servwait &= ~(1 << servi); /* don't expect reply from this serv */
/* process the RCODE */
switch(dns_rcode(pbuf)) {
case DNS_R_NOERROR:
if (dns_tc(pbuf)) {
/* possible truncation. We can't deal with it. */
/*XXX for now, treat TC bit the same as SERVFAIL.
* It is possible to:
* a) try to decode the reply - may be ANSWER section is ok;
* b) check if server understands EDNS0, and if it is, and
* answer still don't fit, end query.
*/
break;
}
if (!dns_numan(pbuf)) { /* no data of requested type */
if (dns_next_srch(ctx, q)) {
/* if we're searching, try next searchlist element,
* but remember NODATA reply. */
q->dnsq_flags |= DNS_SEEN_NODATA;
dns_send(ctx, q, now);
}
else
/* else - nothing to search any more - finish the query.
* It will be NODATA since we've seen a NODATA reply. */
dns_end_query(ctx, q, DNS_E_NODATA, 0);
}
/* we've got a positive reply here */
else if (q->dnsq_parse) {
/* if we have parsing routine, call it and return whatever it returned */
/* don't try to re-search if NODATA here. For example,
* if we asked for A but only received CNAME. Unless we'll
* someday do recursive queries. And that's problematic too, since
* we may be dealing with specific AA-only nameservers for a given
* domain, but CNAME points elsewhere...
*/
r = q->dnsq_parse(q->dnsq_dn, pbuf, pcur, pend, &result);
dns_end_query(ctx, q, r, r < 0 ? NULL : result);
}
/* else just malloc+copy the raw DNS reply */
else if ((result = malloc(r)) == NULL)
dns_end_query(ctx, q, DNS_E_NOMEM, NULL);
else {
memcpy(result, pbuf, r);
dns_end_query(ctx, q, r, result);
}
goto again;
case DNS_R_NXDOMAIN: /* Non-existing domain. */
if (dns_next_srch(ctx, q))
/* more search entries exists, try them. */
dns_send(ctx, q, now);
else
/* nothing to search anymore. End the query, returning either NODATA
* if we've seen it before, or NXDOMAIN if not. */
dns_end_query(ctx, q,
q->dnsq_flags & DNS_SEEN_NODATA ? DNS_E_NODATA : DNS_E_NXDOMAIN, 0);
goto again;
case DNS_R_FORMERR:
case DNS_R_NOTIMPL:
/* for FORMERR and NOTIMPL rcodes, if we tried EDNS0-enabled query,
* try w/o EDNS0. */
if (ctx->dnsc_udpbuf > DNS_MAXPACKET &&
!(q->dnsq_servnEDNS0 & (1 << servi))) {
/* we always trying EDNS0 first if enabled, and retry a given query
* if not available. Maybe it's better to remember inavailability of
* EDNS0 in ctx as a per-NS flag, and never try again for this NS.
* For long-running applications.. maybe they will change the nameserver
* while we're running? :) Also, since FORMERR is the only rcode we
* allow to be header-only, and in this case the only check we do to
* find a query it belongs to is qID (not qDN+qCLS+qTYP), it's much
* easier to spoof and to force us to perform non-EDNS0 queries only...
*/
q->dnsq_servnEDNS0 |= 1 << servi;
dns_send_this(ctx, q, servi, now);
goto again;
}
/* else we handle it the same as SERVFAIL etc */
case DNS_R_SERVFAIL:
case DNS_R_REFUSED:
/* for these rcodes, advance this request
* to the next server and reschedule */
default: /* unknown rcode? hmmm... */
break;
}
/* here, we received unexpected reply */
q->dnsq_servskip |= (1 << servi); /* don't retry this server */
/* we don't expect replies from this server anymore.
* But there may be other servers. Some may be still processing our
* query, and some may be left to try.
* We just ignore this reply and wait a bit more if some NSes haven't
* replied yet (dnsq_servwait != 0), and let the situation to be handled
* on next event processing. Timeout for this query is set correctly,
* if not taking into account the one-second difference - we can try
* next server in the same iteration sooner.
*/
/* try next server */
if (!q->dnsq_servwait) {
/* next retry: maybe some other servers will reply next time.
* dns_send() will end the query for us if no more servers to try.
* Note we can't continue with the next searchlist element here:
* we don't know if the current qdn exists or not, there's no definitive
* answer yet (which is seen in cases above).
*XXX standard resolver also tries as-is query in case all nameservers
* failed to process our query and if not tried before. We don't do it.
*/
dns_send(ctx, q, now);
}
else {
/* else don't do anything - not all servers replied yet */
}
goto again;
}
/* handle all timeouts */
int dns_timeouts(struct dns_ctx *ctx, int maxwait, time_t now) {
/* this is a hot routine */
struct dns_query *q;
SETCTX(ctx);
dns_assert_ctx(ctx);
/* Pick up first entry from query list.
* If its deadline has passed, (re)send it
* (dns_send() will move it next in the list).
* If not, this is the query which determines the closest deadline.
*/
q = ctx->dnsc_qactive.head;
if (!q)
return maxwait;
if (!now)
now = time(NULL);
do {
if (q->dnsq_deadline > now) { /* first non-expired query */
int w = (int)(q->dnsq_deadline - now);
if (maxwait < 0 || maxwait > w)
maxwait = w;
break;
}
else {
/* process expired deadline */
dns_send(ctx, q, now);
}
} while((q = ctx->dnsc_qactive.head) != NULL);
dns_request_utm(ctx, now); /* update timer with new deadline */
return maxwait;
}
struct dns_resolve_data {
int dnsrd_done;
void *dnsrd_result;
};
static void dns_resolve_cb(struct dns_ctx *ctx, void *result, void *data) {
struct dns_resolve_data *d = data;
d->dnsrd_result = result;
d->dnsrd_done = 1;
ctx = ctx;
}
void *dns_resolve(struct dns_ctx *ctx, struct dns_query *q) {
time_t now;
struct dns_resolve_data d;
int n;
SETCTXOPEN(ctx);
if (!q)
return NULL;
assert(ctx == q->dnsq_ctx);
dns_assert_ctx(ctx);
/* do not allow re-resolving syncronous queries */
assert(q->dnsq_cbck != dns_resolve_cb && "can't resolve syncronous query");
if (q->dnsq_cbck == dns_resolve_cb) {
ctx->dnsc_qstatus = DNS_E_BADQUERY;
return NULL;
}
q->dnsq_cbck = dns_resolve_cb;
q->dnsq_cbdata = &d;
d.dnsrd_done = 0;
now = time(NULL);
while(!d.dnsrd_done && (n = dns_timeouts(ctx, -1, now)) >= 0) {
#ifdef HAVE_POLL
struct pollfd pfd;
pfd.fd = ctx->dnsc_udpsock;
pfd.events = POLLIN;
n = poll(&pfd, 1, n * 1000);
#else
fd_set rfd;
struct timeval tv;
FD_ZERO(&rfd);
FD_SET(ctx->dnsc_udpsock, &rfd);
tv.tv_sec = n; tv.tv_usec = 0;
n = select(ctx->dnsc_udpsock + 1, &rfd, NULL, NULL, &tv);
#endif
now = time(NULL);
if (n > 0)
dns_ioevent(ctx, now);
}
return d.dnsrd_result;
}
void *dns_resolve_dn(struct dns_ctx *ctx,
dnscc_t *dn, int qcls, int qtyp, int flags,
dns_parse_fn *parse) {
return
dns_resolve(ctx,
dns_submit_dn(ctx, dn, qcls, qtyp, flags, parse, NULL, NULL));
}
void *dns_resolve_p(struct dns_ctx *ctx,
const char *name, int qcls, int qtyp, int flags,
dns_parse_fn *parse) {
return
dns_resolve(ctx,
dns_submit_p(ctx, name, qcls, qtyp, flags, parse, NULL, NULL));
}
int dns_cancel(struct dns_ctx *ctx, struct dns_query *q) {
SETCTX(ctx);
dns_assert_ctx(ctx);
assert(q->dnsq_ctx == ctx);
/* do not allow cancelling syncronous queries */
assert(q->dnsq_cbck != dns_resolve_cb && "can't cancel syncronous query");
if (q->dnsq_cbck == dns_resolve_cb)
return (ctx->dnsc_qstatus = DNS_E_BADQUERY);
qlist_remove(&ctx->dnsc_qactive, q);
--ctx->dnsc_nactive;
dns_request_utm(ctx, 0);
return 0;
}