The Python Mode-S Decoder (2.0-dev)
==========================================
Python library for Mode-S message decoding. Support Downlink Formats (DF) are:
**Automatic Dependent Surveillance - Broadcast (ADS-B) (DF17)**
- TC=1-4 / BDS 0,8: Aircraft identification and category
- TC=5-8 / BDS 0,6: Surface position
- TC=9-18 / BDS 0,5: Airborne position
- TC=19 / BDS 0,9: Airborne velocity
- TC=28 / BDS 6,1: Airborne status [to be implemented]
- TC=29 / BDS 6,2: Target state and status information [to be implemented]
- TC=31 / BDS 6,5: Aircraft operational status [to be implemented]
**Mode-S Comm-B replies (DF 20 / 21)**
- BDS 1,0: Data link capability report
- BDS 1,7: Common usage GICB capability report
- BDS 2,0: Aircraft identification
- BDS 2,1: Aircraft and airline registration markings
- BDS 3,0: ACAS active resolution advisory
- BDS 4,0: Selected vertical intention
- BDS 4,4: Meteorological routine air report
- BDS 5,0: Track and turn report
- BDS 5,3: Air-referenced state vector
- BDS 6,0: Heading and speed report
**DF4 / DF20: Altitude code**
**DF4 / DF21: Identity code (squawk)**
Detailed manual on Mode-S decoding is published by the author, at:
https://mode-s.org/decode
New features in v2.0
---------------------
- New structure of the libraries
- ADS-B and Comm-B data streaming
- Active aircraft viewing (terminal cursor)
- Improved BDS identification
- Optimizing decoding speed
Source code
-----------
Checkout and contribute to this open source project at:
https://github.com/junzis/pyModeS
API documentation at:
http://pymodes.readthedocs.io
[To be updated]
Install
-------
To install latest development version (dev-2.0) from the GitHub:
::
pip install git+https://github.com/junzis/pyModeS
Use the library
---------------
.. code:: python
import pyModeS as pms
Common functions:
*****************
.. code:: python
pms.df(msg) # Downlink Format
pms.icao(msg) # Infer the ICAO address from the message
pms.crc(msg, encode=False) # Perform CRC or generate parity bit
pms.hex2bin(str) # Convert hexadecimal string to binary string
pms.bin2int(str) # Convert binary string to integer
pms.hex2int(str) # Convert hexadecimal string to integer
pms.gray2int(str) # Convert grey code to interger
Core functions for ADS-B decoding:
**********************************
.. code:: python
pms.adsb.icao(msg)
pms.adsb.typecode(msg)
# typecode 1-4
pms.adsb.callsign(msg)
# typecode 5-8 (surface), 9-18 (airborne, barometric height), and 9-18 (airborne, GNSS height)
pms.adsb.position(msg_even, msg_odd, t_even, t_odd, lat_ref=None, lon_ref=None)
pms.adsb.airborne_position(msg_even, msg_odd, t_even, t_odd)
pms.adsb.surface_position(msg_even, msg_odd, t_even, t_odd, lat_ref, lon_ref)
pms.adsb.position_with_ref(msg, lat_ref, lon_ref)
pms.adsb.airborne_position_with_ref(msg, lat_ref, lon_ref)
pms.adsb.surface_position_with_ref(msg, lat_ref, lon_ref)
pms.adsb.altitude(msg)
# typecode: 19
pms.adsb.velocity(msg) # handles both surface & airborne messages
pms.adsb.speed_heading(msg) # handles both surface & airborne messages
pms.adsb.surface_velocity(msg)
pms.adsb.airborne_velocity(msg)
Note: When you have a fix position of the aircraft, it is convenient to
use `position_with_ref()` method to decode with only one position message
(either odd or even). This works with both airborne and surface position
messages. But the reference position shall be with in 180NM (airborne)
or 45NM (surface) of the true position.
Common Mode-S functions
************************
.. code:: python
pms.icao(msg) # Infer the ICAO address from the message
pms.bds.infer(msg) # Infer the Modes-S BDS code
pms.bds.is10(msg) # check if BDS is 1,0 explicitly
pms.bds.is17(msg) # check if BDS is 1,7 explicitly
pms.bds.is20(msg) # check if BDS is 2,0 explicitly
pms.bds.is30(msg) # check if BDS is 3,0 explicitly
pms.bds.is40(msg) # check if BDS is 4,0 explicitly
pms.bds.is44(msg) # check if BDS is 4,4 explicitly
pms.bds.is50(msg) # check if BDS is 5,0 explicitly
pms.bds.is60(msg) # check if BDS is 6,0 explicitly
# check if BDS is 5,0 or 6,0, give reference spd, trk, alt (from ADS-B)
pms.bds.is50or60(msg, spd_ref, trk_ref, alt_ref)
Mode-S elementary surveillance (ELS)
*************************************
.. code:: python
pms.commb.ovc10(msg) # overlay capability, BDS 1,0
pms.commb.cap17(msg) # GICB capability, BDS 1,7
pms.commb.cs20(msg) # callsign, BDS 2,0
Mode-S enhanced surveillance (EHS)
***********************************
.. code:: python
# for BDS code 4,0
pms.commb.alt40mcp(msg) # MCP/FCU selected altitude (ft)
pms.commb.alt40fms(msg) # FMS selected altitude (ft)
pms.commb.p40baro(msg) # Barometric pressure (mb)
# for BDS code 5,0
pms.commb.roll50(msg) # roll angle (deg)
pms.commb.trk50(msg) # track angle (deg)
pms.commb.gs50(msg) # ground speed (kt)
pms.commb.rtrk50(msg) # track angle rate (deg/sec)
pms.commb.tas50(msg) # true airspeed (kt)
# for BDS code 6,0
pms.commb.hdg60(msg) # heading (deg)
pms.commb.ias60(msg) # indicated airspeed (kt)
pms.commb.mach60(msg) # MACH number
pms.commb.vr60baro(msg) # barometric altitude rate (ft/min)
pms.commb.vr60ins(msg) # inertial vertical speed (ft/min)
Meteorological routine air report (MRAR) [Experimental]
*******************************************************
.. code:: python
# for BDS code 4,4
pms.commb.wind44(msg, rev=False) # wind speed (kt) and heading (deg)
pms.commb.temp44(msg, rev=False) # temperature (C)
pms.commb.p44(msg, rev=False) # pressure (hPa)
pms.commb.hum44(msg, rev=False) # humidity (%)
Developement
------------
To perform unit tests. First install ``tox`` through pip, Then, run the following commands:
.. code:: bash
$ tox