The Python Mode-S Decoder (2.0-dev) ========================================== Python library for Mode-S message decoding. Support Downlink Formats (DF) are: - Automatic Dependent Surveillance - Broadcast (ADS-B) (DF17) - TC=1-4 / BDS 0,8: Aircraft identification and category - TC=5-8 / BDS 0,6: Surface position - TC=9-18 / BDS 0,5: Airborne position - TC=19 / BDS 0,9: Airborne velocity - TC=28 / BDS 6,1: Airborne status [to be implemented] - TC=29 / BDS 6,2: Target state and status information [to be implemented] - TC=31 / BDS 6,5: Aircraft operational status [to be implemented] - Mode-S Comm-B replies (DF 20 / 21) - BDS 1,0: Data link capability report - BDS 1,7: Common usage GICB capability report - BDS 2,0: Aircraft identification - BDS 2,1: Aircraft and airline registration markings - BDS 3,0: ACAS active resolution advisory - BDS 4,0: Selected vertical intention - BDS 4,4: Meteorological routine air report - BDS 5,0: Track and turn report - BDS 5,3: Air-referenced state vector - BDS 6,0: Heading and speed report - DF4 / DF20: Altitude code - DF4 / DF21: Identity code (squawk) Detailed manual on Mode-S decoding is published by the author, at: https://mode-s.org/decode New features in v2.0 --------------------- - New structure of the libraries - ADS-B and Comm-B data streaming - Active aircraft viewing (terminal cursor) - Improved BDS identification - Optimizing decoding speed Source code ----------- Checkout and contribute to this open source project at: https://github.com/junzis/pyModeS API documentation at: http://pymodes.readthedocs.io [To be updated] Install ------- To install latest development version (dev-2.0) from the GitHub: :: pip install git+https://github.com/junzis/pyModeS Use the library --------------- .. code:: python import pyModeS as pms Common functions: ***************** .. code:: python pms.df(msg) # Downlink Format pms.icao(msg) # Infer the ICAO address from the message pms.crc(msg, encode=False) # Perform CRC or generate parity bit pms.hex2bin(str) # Convert hexadecimal string to binary string pms.bin2int(str) # Convert binary string to integer pms.hex2int(str) # Convert hexadecimal string to integer pms.gray2int(str) # Convert grey code to interger Core functions for ADS-B decoding: ********************************** .. code:: python pms.adsb.icao(msg) pms.adsb.typecode(msg) # typecode 1-4 pms.adsb.callsign(msg) # typecode 5-8 (surface), 9-18 (airborne, barometric height), and 9-18 (airborne, GNSS height) pms.adsb.position(msg_even, msg_odd, t_even, t_odd, lat_ref=None, lon_ref=None) pms.adsb.airborne_position(msg_even, msg_odd, t_even, t_odd) pms.adsb.surface_position(msg_even, msg_odd, t_even, t_odd, lat_ref, lon_ref) pms.adsb.position_with_ref(msg, lat_ref, lon_ref) pms.adsb.airborne_position_with_ref(msg, lat_ref, lon_ref) pms.adsb.surface_position_with_ref(msg, lat_ref, lon_ref) pms.adsb.altitude(msg) # typecode: 19 pms.adsb.velocity(msg) # handles both surface & airborne messages pms.adsb.speed_heading(msg) # handles both surface & airborne messages pms.adsb.surface_velocity(msg) pms.adsb.airborne_velocity(msg) Note: When you have a fix position of the aircraft, it is convenient to use `position_with_ref()` method to decode with only one position message (either odd or even). This works with both airborne and surface position messages. But the reference position shall be with in 180NM (airborne) or 45NM (surface) of the true position. Common Mode-S functions ************************ .. code:: python pms.icao(msg) # Infer the ICAO address from the message pms.bds.infer(msg) # Infer the Modes-S BDS code pms.bds.is10(msg) # check if BDS is 1,0 explicitly pms.bds.is17(msg) # check if BDS is 1,7 explicitly pms.bds.is20(msg) # check if BDS is 2,0 explicitly pms.bds.is30(msg) # check if BDS is 3,0 explicitly pms.bds.is40(msg) # check if BDS is 4,0 explicitly pms.bds.is44(msg) # check if BDS is 4,4 explicitly pms.bds.is50(msg) # check if BDS is 5,0 explicitly pms.bds.is60(msg) # check if BDS is 6,0 explicitly # check if BDS is 5,0 or 6,0, give reference spd, trk, alt (from ADS-B) pms.bds.is50or60(msg, spd_ref, trk_ref, alt_ref) Mode-S elementary surveillance (ELS) ************************************* .. code:: python pms.commb.ovc10(msg) # overlay capability, BDS 1,0 pms.commb.cap17(msg) # GICB capability, BDS 1,7 pms.commb.cs20(msg) # callsign, BDS 2,0 Mode-S enhanced surveillance (EHS) *********************************** .. code:: python # for BDS code 4,0 pms.commb.alt40mcp(msg) # MCP/FCU selected altitude (ft) pms.commb.alt40fms(msg) # FMS selected altitude (ft) pms.commb.p40baro(msg) # Barometric pressure (mb) # for BDS code 5,0 pms.commb.roll50(msg) # roll angle (deg) pms.commb.trk50(msg) # track angle (deg) pms.commb.gs50(msg) # ground speed (kt) pms.commb.rtrk50(msg) # track angle rate (deg/sec) pms.commb.tas50(msg) # true airspeed (kt) # for BDS code 6,0 pms.commb.hdg60(msg) # heading (deg) pms.commb.ias60(msg) # indicated airspeed (kt) pms.commb.mach60(msg) # MACH number pms.commb.vr60baro(msg) # barometric altitude rate (ft/min) pms.commb.vr60ins(msg) # inertial vertical speed (ft/min) Meteorological routine air report (MRAR) [Experimental] ******************************************************* .. code:: python # for BDS code 4,4 pms.commb.wind44(msg, rev=False) # wind speed (kt) and heading (deg) pms.commb.temp44(msg, rev=False) # temperature (C) pms.commb.p44(msg, rev=False) # pressure (hPa) pms.commb.hum44(msg, rev=False) # humidity (%) Developement ------------ To perform unit tests. First install ``tox`` through pip, Then, run the following commands: .. code:: bash $ tox