complete surface position decoding

This commit is contained in:
junzis 2016-10-19 16:22:28 +02:00
parent b648f4e7a5
commit 4bafa1de19
4 changed files with 120 additions and 27 deletions

View File

@ -62,15 +62,24 @@ Core functions for ADS-B decoding:
pms.adsb.icao(msg)
pms.adsb.callsign(msg)
pms.adsb.position(msg_even, msg_odd, t_even, t_odd)
pms.adsb.position(msg_even, msg_odd, t_even, t_odd, lat_ref=None, lon_ref=None)
pms.adsb.airborne_position(msg_even, msg_odd, t_even, t_odd)
pms.adsb.surface_position(msg_even, msg_odd, t_even, t_odd, lat_ref, lon_ref)
pms.adsb.position_with_ref(msg, lat_ref, lon_ref)
pms.adsb.airborne_position_with_ref(msg, lat_ref, lon_ref)
pms.adsb.surface_position_with_ref(msg, lat_ref, lon_ref)
pms.adsb.altitude(msg)
pms.adsb.velocity(msg)
pms.adsb.speed_heading(msg)
**Hint: When you have a fix position of the aircraft or you know the
location of your receiver, it is convinent to use `position_with_ref()` method
to decode with only one position message (either odd or even)**
**Hint: When you have a fix position of the aircraft, it is convenient to
use `position_with_ref()` method to decode with only one position message
(either odd or even). This works with both airborne and surface position
messages. But the reference position shall be with in 180NM (airborne)
or 45NM (surface) of the true position.**
Core functions for EHS decoding:

View File

@ -167,7 +167,7 @@ def cprlon(msg):
return util.bin2int(msgbin[71:88])
def position(msg0, msg1, t0, t1):
def position(msg0, msg1, t0, t1, lat_ref=None, lon_ref=None):
"""Decode position from a pair of even and odd position message
(works with both airborne and surface position messages)
@ -181,7 +181,12 @@ def position(msg0, msg1, t0, t1):
(float, float): (latitude, longitude) of the aircraft
"""
if (5 <= typecode(msg0) <= 8 and 5 <= typecode(msg1) <= 8):
return surface_position(msg0, msg1, t0, t1)
if (not lat_ref) or (not lon_ref):
raise RuntimeError("Surface position encountered, a reference \
position lat/lon required. Location of \
receiver can be used.")
else:
return surface_position(msg0, msg1, t0, t1, lat_ref, lon_ref)
elif (9 <= typecode(msg0) <= 18 and 9 <= typecode(msg1) <= 18):
return airborne_position(msg0, msg1, t0, t1)
@ -233,17 +238,17 @@ def airborne_position(msg0, msg1, t0, t1):
# compute ni, longitude index m, and longitude
if (t0 > t1):
ni = max(_cprNL(lat_even), 1)
m = util.floor(cprlon_even * (_cprNL(lat_even)-1) -
cprlon_odd * _cprNL(lat_even) + 0.5)
lon = (360.0 / ni) * (m % ni + cprlon_even)
lat = lat_even
nl = _cprNL(lat)
ni = max(_cprNL(lat)- 0, 1)
m = util.floor(cprlon_even * (nl-1) - cprlon_odd * nl + 0.5)
lon = (360.0 / ni) * (m % ni + cprlon_even)
else:
ni = max(_cprNL(lat_odd) - 1, 1)
m = util.floor(cprlon_even * (_cprNL(lat_odd)-1) -
cprlon_odd * _cprNL(lat_odd) + 0.5)
lon = (360.0 / ni) * (m % ni + cprlon_odd)
lat = lat_odd
nl = _cprNL(lat)
ni = max(_cprNL(lat) - 1, 1)
m = util.floor(cprlon_even * (nl-1) - cprlon_odd * nl + 0.5)
lon = (360.0 / ni) * (m % ni + cprlon_odd)
if lon > 180:
lon = lon - 360
@ -255,7 +260,9 @@ def position_with_ref(msg, lat_ref, lon_ref):
"""Decode position with only one message,
knowing reference nearby location, such as previously
calculated location, ground station, or airport location, etc.
(works with both airborne and surface position messages)
Works with both airborne and surface position messages.
The reference position shall be with in 180NM (airborne) or 45NM (surface)
of the true position.
Args:
msg0 (string): even message (28 bytes hexadecimal string)
@ -279,7 +286,8 @@ def position_with_ref(msg, lat_ref, lon_ref):
def airborne_position_with_ref(msg, lat_ref, lon_ref):
"""Decode airborne position with only one message,
knowing reference nearby location, such as previously calculated location,
ground station, or airport location, etc.
ground station, or airport location, etc. The reference position shall
be with in 180NM of the true position.
Args:
msg (string): even message (28 bytes hexadecimal string)
@ -317,15 +325,83 @@ def airborne_position_with_ref(msg, lat_ref, lon_ref):
return round(lat, 5), round(lon, 5)
def surface_position(msg0, msg1, t0, t1):
# TODO: implement surface positon
raise RuntimeError('suface position decoding to be implemented soon...')
def surface_position(msg0, msg1, t0, t1, lat_ref, lon_ref):
"""Decode surface position from a pair of even and odd position message,
the lat/lon of receiver must be provided to yield the correct solution.
Args:
msg0 (string): even message (28 bytes hexadecimal string)
msg1 (string): odd message (28 bytes hexadecimal string)
t0 (int): timestamps for the even message
t1 (int): timestamps for the odd message
lat_ref (float): latitude of the receiver
lon_ref (float): longitude of the receiver
Returns:
(float, float): (latitude, longitude) of the aircraft
"""
msgbin0 = util.hex2bin(msg0)
msgbin1 = util.hex2bin(msg1)
# 131072 is 2^17, since CPR lat and lon are 17 bits each.
cprlat_even = util.bin2int(msgbin0[54:71]) / 131072.0
cprlon_even = util.bin2int(msgbin0[71:88]) / 131072.0
cprlat_odd = util.bin2int(msgbin1[54:71]) / 131072.0
cprlon_odd = util.bin2int(msgbin1[71:88]) / 131072.0
air_d_lat_even = 90.0 / 60
air_d_lat_odd = 90.0 / 59
# compute latitude index 'j'
j = util.floor(59 * cprlat_even - 60 * cprlat_odd + 0.5)
# solution for north hemisphere
lat_even_n = float(air_d_lat_even * (j % 60 + cprlat_even))
lat_odd_n = float(air_d_lat_odd * (j % 59 + cprlat_odd))
# solution for north hemisphere
lat_even_s = lat_even_n - 90.0
lat_odd_s = lat_odd_n - 90.0
# chose which solution corrispondes to receiver location
lat_even = lat_even_n if lat_ref > 0 else lat_even_s
lat_odd = lat_odd_n if lat_ref > 0 else lat_odd_s
# check if both are in the same latidude zone, rare but possible
if _cprNL(lat_even) != _cprNL(lat_odd):
return None
# compute ni, longitude index m, and longitude
if (t0 > t1):
lat = lat_even
nl = _cprNL(lat_even)
ni = max(_cprNL(lat_even) - 0, 1)
m = util.floor(cprlon_even * (nl-1) - cprlon_odd * nl + 0.5)
lon = (90.0 / ni) * (m % ni + cprlon_even)
else:
lat = lat_odd
nl = _cprNL(lat_odd)
ni = max(_cprNL(lat_odd) - 1, 1)
m = util.floor(cprlon_even * (nl-1) - cprlon_odd * nl + 0.5)
lon = (90.0 / ni) * (m % ni + cprlon_odd)
# four possible longitude solutions
lons = [lon, lon + 90.0, lon + 180.0, lon + 270.0]
# the closest solution to receiver is the correct one
dls = [abs(lon_ref - l) for l in lons]
imin = min(range(4), key=dls.__getitem__)
lon = lons[imin]
return round(lat, 5), round(lon, 5)
def surface_position_with_ref(msg, lat_ref, lon_ref):
"""Decode surface position with only one message,
knowing reference nearby location, such as previously calculated location,
ground station, or airport location, etc.
ground station, or airport location, etc. The reference position shall
be with in 45NM of the true position.
Args:
msg (string): even message (28 bytes hexadecimal string)

View File

@ -37,6 +37,13 @@ def test_adsb_surface_position_with_ref():
assert pos == (-43.48564, 175.87195)
def test_adsb_surface_position():
pos = adsb.surface_position("8CC8200A3AC8F009BCDEF2000000",
"8FC8200A3AB8F5F893096B000000",
0, 2,
-43.496, 172.558)
assert pos == (-43.48564, 172.53942)
def test_adsb_alt():
assert adsb.altitude("8D40058B58C901375147EFD09357") == 39000

View File

@ -12,7 +12,8 @@ def test_ehs_BDS():
assert ehs.BDS("A0001839CA3800315800007448D9") == 'BDS40'
assert ehs.BDS("A000139381951536E024D4CCF6B5") == 'BDS50'
assert ehs.BDS("A000029CFFBAA11E2004727281F1") == 'BDS60'
assert ehs.BDS("A0281838CAE9E12FA03FFF2DDDE5") is None
assert ehs.BDS("A0281838CAE9E12FA03FFF2DDDE5") == 'BDS44'
assert ehs.BDS("A00017B0C8480030A4000024512F") is None
def test_ehs_BDS20_callsign():