update EHS BDS identification, add isBDS50or60() function

pull/15/head
Junzi Sun 7 years ago
parent 5697e5b88e
commit 4911e69171

@ -6,3 +6,5 @@ from .decoder import ehs
from .decoder import els
from .decoder import util
from .decoder import modes_common
from .extra import aero
from .extra import beastclient

@ -18,8 +18,9 @@ A python package for decoding ModeS (DF20, DF21) messages.
"""
from __future__ import absolute_import, print_function, division
from . import util, modes_common
from scipy.stats import multivariate_normal
import numpy as np
from pyModeS.decoder import util, modes_common
from pyModeS.extra import aero
def icao(msg):
return modes_common.icao(msg)
@ -972,6 +973,61 @@ def vr60ins(msg):
return roc
def isBDS50or60(msg, spd_ref, trk_ref, alt_ref):
"""Use reference ground speed and trk to determine BDS50 and DBS60
Args:
msg (String): 28 bytes hexadecimal message string
spd_ref (float): reference speed (ADS-B ground speed), kts
trk_ref (float): reference track (ADS-B track angle), deg
alt_ref (float): reference altitude (ADS-B altitude), ft
Returns:
String or None: BDS version, or possible versions, or None if nothing matches.
"""
def vxy(v, angle):
vx = v * np.sin(np.deg2rad(angle))
vy = v * np.cos(np.deg2rad(angle))
return vx, vy
if not (isBDS50(msg) and isBDS60(msg)):
return None
h50 = trk50(msg)
v50 = gs50(msg)
h50 = np.nan if h50 is None else h50
v50 = np.nan if v50 is None else v50
h60 = hdg60(msg)
m60 = mach60(msg)
i60 = ias60(msg)
h60 = np.nan if h60 is None else h60
m60 = np.nan if m60 is None else m60
i60 = np.nan if i60 is None else i60
XY5 = vxy(v50*aero.kts, h50)
XY6m = vxy(aero.mach2tas(m60, alt_ref*aero.ft), h60)
XY6i = vxy(aero.cas2tas(i60*aero.kts, alt_ref*aero.ft), h60)
allbds = ['BDS50', 'BDS60', 'BDS60']
X = np.array([XY5, XY6m, XY6i])
Mu = np.array(vxy(spd_ref*aero.kts, trk_ref*aero.kts))
# compute Mahalanobis distance matrix
# Cov = [[20**2, 0], [0, 20**2]]
# mmatrix = np.sqrt(np.dot(np.dot(X-Mu, np.linalg.inv(Cov)), (X-Mu).T))
# dist = np.diag(mmatrix)
# since the covariance matrix is identity matrix,
# M-dist is same as eculidian distance
dist = np.linalg.norm(X-Mu, axis=1)
BDS = allbds[np.nanargmin(dist)]
return BDS
def BDS(msg):
"""Estimate the most likely BDS code of an message
@ -994,78 +1050,16 @@ def BDS(msg):
is53 = isBDS53(msg)
is60 = isBDS60(msg)
BDS = ["BDS17", "BDS20", "BDS40", "BDS44", "BDS44REV", "BDS50", "BDS53", "BDS60"]
allbds = np.array([
"BDS17", "BDS20", "BDS40", "BDS44", "BDS44REV",
"BDS50", "BDS53", "BDS60"
])
isBDS = [is17, is20, is40, is44, is44rev, is50, is53, is60]
if sum(isBDS) == 0:
bds = ','.join(sorted(allbds[isBDS]))
if len(bds) == 0:
return None
elif sum(isBDS) == 1:
return BDS[isBDS.index(True)]
else:
bds_ = [bds for (bds, i) in zip(BDS, isBDS) if i]
return ','.join(bds_)
def Vxy(V, angle):
Vx = V*np.sin(np.deg2rad(angle))
Vy = V*np.cos(np.deg2rad(angle))
return Vx, Vy
def BDSv2(msg, SPDref=np.nan, TRKref=np.nan, ALTref=np.nan):
"""Use probabilistic method to determine the most likely BDS code of an message
Args:
msg (String): 28 bytes hexadecimal message string
SPDref (float): reference speed (for example ADS-B GS)
TRKref (float): reference track (for example ADS-B TRK)
ALTref (float): reference altitude (for example ADS-B altitude)
Returns:
String or None: BDS version, or possible versions, or None if nothing matches.
"""
BDS = pms.ehs.BDS(msg)
if type(BDS) != list:
return BDS
else:
if 'BDS53' in BDS:
BDS.remove('BDS53')
if 'BDS40' in BDS:
fms = pms.ehs.alt40fms(msg)
mcp = pms.ehs.alt40mcp(msg)
baro = pms.ehs.p40baro(msg)
if fms != None:
if (((fms % 100) <= 8) or ((fms % 100) >= 92)) and fms < 50500:
return 'BDS40'
if mcp != None:
if (((mcp % 100) <= 8) or ((mcp % 100) >= 92)) and mcp < 50500:
return 'BDS40'
if baro != None:
if (983 <= baro <= 1043): #1013 -+ 30
return 'BDS40'
if set(BDS).issubset(['BDS50', 'BDS60']):
if ~(np.isnan(SPDref) or np.isnan(TRKref) or np.isnan(ALTref)):
meanV = Vxy(SPDref, TRKref)
sigmaV = 20
covV = [[sigmaV**2, 0], [0, sigmaV**2]]
try: # Because register field is not available.
pBDS50 = multivariate_normal(meanV, covV).pdf(Vxy(pms.ehs.gs50(msg), pms.ehs.trk50(msg)))
pBDS60_1 = multivariate_normal(meanV, covV).pdf(Vxy(aero.mach2tas(pms.ehs.mach60(msg), ALTref*aero.ft)/aero.kts, pms.ehs.hdg60(msg)))
pBDS60_2 = multivariate_normal(meanV, covV).pdf(Vxy(aero.cas2tas(pms.ehs.ias60(msg)*aero.kts, ALTref*aero.ft)/aero.kts, pms.ehs.hdg60(msg)))
pBDS60 = max(pBDS60_1, pBDS60_2)
except:
return BDS
if pBDS50 + pBDS60 > 0: #Avoid None values
if pBDS50 > pBDS60:
return 'BDS50'
elif pBDS50 < pBDS60:
return 'BDS60'
return BDS
return bds

@ -0,0 +1 @@
from __future__ import absolute_import, print_function, division

@ -1,178 +1,178 @@
"""
Functions for aeronautics in this module
- physical quantities always in SI units
- lat,lon,course and heading in degrees
International Standard Atmosphere
p,rho,T = atmos(H) # atmos as function of geopotential altitude H [m]
a = vsound(H) # speed of sound [m/s] as function of H[m]
p = pressure(H) # calls atmos but retruns only pressure [Pa]
T = temperature(H) # calculates temperature [K]
rho = density(H) # calls atmos but retruns only pressure [Pa]
Speed conversion at altitude H[m] in ISA:
Mach = tas2mach(Vtas,H) # true airspeed (Vtas) to mach number conversion
Vtas = mach2tas(Mach,H) # true airspeed (Vtas) to mach number conversion
Vtas = eas2tas(Veas,H) # equivalent airspeed to true airspeed, H in [m]
Veas = tas2eas(Vtas,H) # true airspeed to equivent airspeed, H in [m]
Vtas = cas2tas(Vcas,H) # Vcas to Vtas conversion both m/s, H in [m]
Vcas = tas2cas(Vtas,H) # Vtas to Vcas conversion both m/s, H in [m]
Vcas = mach2cas(Mach,H) # Mach to Vcas conversion Vcas in m/s, H in [m]
Mach = cas2mach(Vcas,H) # Vcas to mach copnversion Vcas in m/s, H in [m]
"""
import numpy as np
"""Aero and geo Constants """
kts = 0.514444 # knot -> m/s
ft = 0.3048 # ft -> m
fpm = 0.00508 # ft/min -> m/s
inch = 0.0254 # inch -> m
sqft = 0.09290304 # 1 square foot
nm = 1852. # nautical mile -> m
lbs = 0.453592 # pound -> kg
g0 = 9.80665 # m/s2, Sea level gravity constant
R = 287.05287 # m2/(s2 x K), gas constant, sea level ISA
p0 = 101325. # Pa, air pressure, sea level ISA
rho0 = 1.225 # kg/m3, air density, sea level ISA
T0 = 288.15 # K, temperature, sea level ISA
gamma = 1.40 # cp/cv for air
gamma1 = 0.2 # (gamma-1)/2 for air
gamma2 = 3.5 # gamma/(gamma-1) for air
beta = -0.0065 # [K/m] ISA temp gradient below tropopause
r_earth = 6371000. # m, average earth radius
a0 = 340.293988 # m/s, sea level speed of sound ISA, sqrt(gamma*R*T0)
def atmos(H):
# H in metres
T = np.maximum(288.15 - 0.0065 * H, 216.65)
rhotrop = 1.225 * (T / 288.15)**4.256848030018761
dhstrat = np.maximum(0., H - 11000.0)
rho = rhotrop * np.exp(-dhstrat / 6341.552161)
p = rho * R * T
return p, rho, T
def temperature(H):
p, r, T = atmos(H)
return T
def pressure(H):
p, r, T = atmos(H)
return p
def density(H):
p, r, T = atmos(H)
return r
def vsound(H):
"""Speed of sound"""
T = temperature(H)
a = np.sqrt(gamma * R * T)
return a
def distance(lat1, lon1, lat2, lon2, H=0):
"""
Compute spherical distance from spherical coordinates.
For two locations in spherical coordinates
(1, theta, phi) and (1, theta', phi')
cosine( arc length ) =
sin phi sin phi' cos(theta-theta') + cos phi cos phi'
distance = rho * arc length
"""
# phi = 90 - latitude
phi1 = np.radians(90.0 - lat1)
phi2 = np.radians(90.0 - lat2)
# theta = longitude
theta1 = np.radians(lon1)
theta2 = np.radians(lon2)
cos = np.sin(phi1) * np.sin(phi2) * np.cos(theta1 - theta2) \
+ np.cos(phi1) * np.cos(phi2)
arc = np.arccos(cos)
dist = arc * (r_earth + H) # meters, radius of earth
return dist
def bearing(lat1, lon1, lat2, lon2):
lat1 = np.radians(lat1)
lon1 = np.radians(lon1)
lat2 = np.radians(lat2)
lon2 = np.radians(lon2)
x = np.sin(lon2-lon1) * np.cos(lat2)
y = np.cos(lat1) * np.sin(lat2) \
- np.sin(lat1) * np.cos(lat2) * np.cos(lon2-lon1)
initial_bearing = np.arctan2(x, y)
initial_bearing = np.degrees(initial_bearing)
bearing = (initial_bearing + 360) % 360
return bearing
# -----------------------------------------------------
# Speed conversions, altitude H all in meters
# -----------------------------------------------------
def tas2mach(Vtas, H):
"""True Airspeed to Mach number"""
a = vsound(H)
Mach = Vtas/a
return Mach
def mach2tas(Mach, H):
"""Mach number to True Airspeed"""
a = vsound(H)
Vtas = Mach*a
return Vtas
def eas2tas(Veas, H):
"""Equivalent Airspeed to True Airspeed"""
rho = density(H)
Vtas = Veas * np.sqrt(rho0/rho)
return Vtas
def tas2eas(Vtas, H):
"""True Airspeed to Equivalent Airspeed"""
rho = density(H)
Veas = Vtas * np.sqrt(rho/rho0)
return Veas
def cas2tas(Vcas, H):
"""Calibrated Airspeed to True Airspeed"""
p, rho, T = atmos(H)
qdyn = p0*((1.+rho0*Vcas*Vcas/(7.*p0))**3.5-1.)
Vtas = np.sqrt(7.*p/rho*((1.+qdyn/p)**(2./7.)-1.))
return Vtas
def tas2cas(Vtas, H):
"""True Airspeed to Calibrated Airspeed"""
p, rho, T = atmos(H)
qdyn = p*((1.+rho*Vtas*Vtas/(7.*p))**3.5-1.)
Vcas = np.sqrt(7.*p0/rho0*((qdyn/p0+1.)**(2./7.)-1.))
return Vcas
def mach2cas(Mach, H):
"""Mach number to Calibrated Airspeed"""
Vtas = mach2tas(Mach, H)
Vcas = tas2cas(Vtas, H)
return Vcas
def cas2mach(Vcas, H):
"""Calibrated Airspeed to Mach number"""
Vtas = cas2tas(Vcas, H)
Mach = tas2mach(Vtas, H)
return Mach
"""
Functions for aeronautics in this module
- physical quantities always in SI units
- lat,lon,course and heading in degrees
International Standard Atmosphere
p,rho,T = atmos(H) # atmos as function of geopotential altitude H [m]
a = vsound(H) # speed of sound [m/s] as function of H[m]
p = pressure(H) # calls atmos but retruns only pressure [Pa]
T = temperature(H) # calculates temperature [K]
rho = density(H) # calls atmos but retruns only pressure [Pa]
Speed conversion at altitude H[m] in ISA:
Mach = tas2mach(Vtas,H) # true airspeed (Vtas) to mach number conversion
Vtas = mach2tas(Mach,H) # true airspeed (Vtas) to mach number conversion
Vtas = eas2tas(Veas,H) # equivalent airspeed to true airspeed, H in [m]
Veas = tas2eas(Vtas,H) # true airspeed to equivent airspeed, H in [m]
Vtas = cas2tas(Vcas,H) # Vcas to Vtas conversion both m/s, H in [m]
Vcas = tas2cas(Vtas,H) # Vtas to Vcas conversion both m/s, H in [m]
Vcas = mach2cas(Mach,H) # Mach to Vcas conversion Vcas in m/s, H in [m]
Mach = cas2mach(Vcas,H) # Vcas to mach copnversion Vcas in m/s, H in [m]
"""
import numpy as np
"""Aero and geo Constants """
kts = 0.514444 # knot -> m/s
ft = 0.3048 # ft -> m
fpm = 0.00508 # ft/min -> m/s
inch = 0.0254 # inch -> m
sqft = 0.09290304 # 1 square foot
nm = 1852. # nautical mile -> m
lbs = 0.453592 # pound -> kg
g0 = 9.80665 # m/s2, Sea level gravity constant
R = 287.05287 # m2/(s2 x K), gas constant, sea level ISA
p0 = 101325. # Pa, air pressure, sea level ISA
rho0 = 1.225 # kg/m3, air density, sea level ISA
T0 = 288.15 # K, temperature, sea level ISA
gamma = 1.40 # cp/cv for air
gamma1 = 0.2 # (gamma-1)/2 for air
gamma2 = 3.5 # gamma/(gamma-1) for air
beta = -0.0065 # [K/m] ISA temp gradient below tropopause
r_earth = 6371000. # m, average earth radius
a0 = 340.293988 # m/s, sea level speed of sound ISA, sqrt(gamma*R*T0)
def atmos(H):
# H in metres
T = np.maximum(288.15 - 0.0065 * H, 216.65)
rhotrop = 1.225 * (T / 288.15)**4.256848030018761
dhstrat = np.maximum(0., H - 11000.0)
rho = rhotrop * np.exp(-dhstrat / 6341.552161)
p = rho * R * T
return p, rho, T
def temperature(H):
p, r, T = atmos(H)
return T
def pressure(H):
p, r, T = atmos(H)
return p
def density(H):
p, r, T = atmos(H)
return r
def vsound(H):
"""Speed of sound"""
T = temperature(H)
a = np.sqrt(gamma * R * T)
return a
def distance(lat1, lon1, lat2, lon2, H=0):
"""
Compute spherical distance from spherical coordinates.
For two locations in spherical coordinates
(1, theta, phi) and (1, theta', phi')
cosine( arc length ) =
sin phi sin phi' cos(theta-theta') + cos phi cos phi'
distance = rho * arc length
"""
# phi = 90 - latitude
phi1 = np.radians(90.0 - lat1)
phi2 = np.radians(90.0 - lat2)
# theta = longitude
theta1 = np.radians(lon1)
theta2 = np.radians(lon2)
cos = np.sin(phi1) * np.sin(phi2) * np.cos(theta1 - theta2) + np.cos(phi1) * np.cos(phi2)
cos = np.where(cos>1, 1, cos)
arc = np.arccos(cos)
dist = arc * (r_earth + H) # meters, radius of earth
return dist
def bearing(lat1, lon1, lat2, lon2):
lat1 = np.radians(lat1)
lon1 = np.radians(lon1)
lat2 = np.radians(lat2)
lon2 = np.radians(lon2)
x = np.sin(lon2-lon1) * np.cos(lat2)
y = np.cos(lat1) * np.sin(lat2) \
- np.sin(lat1) * np.cos(lat2) * np.cos(lon2-lon1)
initial_bearing = np.arctan2(x, y)
initial_bearing = np.degrees(initial_bearing)
bearing = (initial_bearing + 360) % 360
return bearing
# -----------------------------------------------------
# Speed conversions, altitude H all in meters
# -----------------------------------------------------
def tas2mach(Vtas, H):
"""True Airspeed to Mach number"""
a = vsound(H)
Mach = Vtas/a
return Mach
def mach2tas(Mach, H):
"""Mach number to True Airspeed"""
a = vsound(H)
Vtas = Mach*a
return Vtas
def eas2tas(Veas, H):
"""Equivalent Airspeed to True Airspeed"""
rho = density(H)
Vtas = Veas * np.sqrt(rho0/rho)
return Vtas
def tas2eas(Vtas, H):
"""True Airspeed to Equivalent Airspeed"""
rho = density(H)
Veas = Vtas * np.sqrt(rho/rho0)
return Veas
def cas2tas(Vcas, H):
"""Calibrated Airspeed to True Airspeed"""
p, rho, T = atmos(H)
qdyn = p0*((1.+rho0*Vcas*Vcas/(7.*p0))**3.5-1.)
Vtas = np.sqrt(7.*p/rho*((1.+qdyn/p)**(2./7.)-1.))
return Vtas
def tas2cas(Vtas, H):
"""True Airspeed to Calibrated Airspeed"""
p, rho, T = atmos(H)
qdyn = p*((1.+rho*Vtas*Vtas/(7.*p))**3.5-1.)
Vcas = np.sqrt(7.*p0/rho0*((qdyn/p0+1.)**(2./7.)-1.))
return Vcas
def mach2cas(Mach, H):
"""Mach number to Calibrated Airspeed"""
Vtas = mach2tas(Mach, H)
Vcas = tas2cas(Vtas, H)
return Vcas
def cas2mach(Vcas, H):
"""Calibrated Airspeed to Mach number"""
Vtas = cas2tas(Vcas, H)
Mach = tas2mach(Vtas, H)
return Mach

@ -5,11 +5,11 @@ import argparse
import curses
import numpy as np
import time
import pyModeS as pms
from threading import Lock
from client import BaseClient
from stream import Stream
from screen import Screen
from pyModeS.decoder import util
from pyModeS.extra.beastclient import BaseClient
from pyModeS.streamer.stream import Stream
from pyModeS.streamer.screen import Screen
LOCK = Lock()
ADSB_MSG = []
@ -43,7 +43,7 @@ class ModesClient(BaseClient):
if len(msg) < 28: # only process long messages
continue
df = pms.df(msg)
df = util.df(msg)
if df == 17 or df == 18:
local_buffer_adsb_msg.append(msg)

@ -1,8 +1,7 @@
from __future__ import print_function, division
from __future__ import absolute_import, print_function, division
import numpy as np
import time
import pyModeS as pms
from pyModeS.decoder import adsb, ehs
class Stream():
def __init__(self, lat0, lon0):
@ -32,8 +31,8 @@ class Stream():
# process adsb message
for t, msg in zip(adsb_ts, adsb_msgs):
icao = pms.adsb.icao(msg)
tc = pms.adsb.typecode(msg)
icao = adsb.icao(msg)
tc = adsb.typecode(msg)
if icao not in self.acs:
self.acs[icao] = {
@ -52,10 +51,10 @@ class Stream():
self.acs[icao]['t'] = t
if 1 <= tc <= 4:
self.acs[icao]['callsign'] = pms.adsb.callsign(msg)
self.acs[icao]['callsign'] = adsb.callsign(msg)
if (5 <= tc <= 8) or (tc == 19):
vdata = pms.adsb.velocity(msg)
vdata = adsb.velocity(msg)
if vdata is None:
continue
@ -69,7 +68,7 @@ class Stream():
self.acs[icao]['tv'] = t
if (5 <= tc <= 18):
oe = pms.adsb.oe_flag(msg)
oe = adsb.oe_flag(msg)
self.acs[icao][oe] = msg
self.acs[icao]['t'+str(oe)] = t
@ -77,12 +76,12 @@ class Stream():
# use single message decoding
rlat = self.acs[icao]['lat']
rlon = self.acs[icao]['lon']
latlon = pms.adsb.position_with_ref(msg, rlat, rlon)
latlon = adsb.position_with_ref(msg, rlat, rlon)
elif ('t0' in self.acs[icao]) and ('t1' in self.acs[icao]) and \
(abs(self.acs[icao]['t0'] - self.acs[icao]['t1']) < 10):
# use multi message decoding
try:
latlon = pms.adsb.position(
latlon = adsb.position(
self.acs[icao][0],
self.acs[icao][1],
self.acs[icao]['t0'],
@ -99,29 +98,29 @@ class Stream():
self.acs[icao]['tpos'] = t
self.acs[icao]['lat'] = latlon[0]
self.acs[icao]['lon'] = latlon[1]
self.acs[icao]['alt'] = pms.adsb.altitude(msg)
self.acs[icao]['alt'] = adsb.altitude(msg)
local_updated_acs_buffer.append(icao)
# process ehs message
for t, msg in zip(ehs_ts, ehs_msgs):
icao = pms.ehs.icao(msg)
icao = ehs.icao(msg)
if icao not in self.acs:
continue
bds = pms.ehs.BDS(msg)
bds = ehs.BDS(msg)
if bds == 'BDS50':
tas = pms.ehs.tas50(msg)
tas = ehs.tas50(msg)
if tas:
self.acs[icao]['t50'] = t
self.acs[icao]['tas'] = tas
elif bds == 'BDS60':
ias = pms.ehs.ias60(msg)
hdg = pms.ehs.hdg60(msg)
mach = pms.ehs.mach60(msg)
ias = ehs.ias60(msg)
hdg = ehs.hdg60(msg)
mach = ehs.mach60(msg)
if ias or hdg or mach:
self.acs[icao]['t60'] = t

@ -14,10 +14,14 @@ def test_df20alt():
def test_ehs_BDS():
assert ehs.BDS("A0001838201584F23468207CDFA5") == 'BDS20'
assert ehs.BDS("A0001839CA3800315800007448D9") == 'BDS40'
# assert ehs.BDS("A000031DBAA9DD18622C441330E9") == 'BDS44'
assert ehs.BDS("A000139381951536E024D4CCF6B5") == 'BDS50'
assert ehs.BDS("A00004128F39F91A7E27C46ADC21") == 'BDS60'
def test_ehs_isBDS50or60():
assert ehs.isBDS50or60("A0001838201584F23468207CDFA5", 0, 0, 0) == None
assert ehs.isBDS50or60("A0000000FFDA9517000464000000", 182, 237, 1250) == 'BDS50'
assert ehs.isBDS50or60("A0000000919A5927E23444000000", 413, 54, 18700) == 'BDS60'
def test_ehs_BDS20_callsign():
assert ehs.callsign("A000083E202CC371C31DE0AA1CCF") == 'KLM1017_'
assert ehs.callsign("A0001993202422F2E37CE038738E") == 'IBK2873_'

Loading…
Cancel
Save