548 lines
21 KiB
JavaScript
548 lines
21 KiB
JavaScript
"use strict";
|
||
|
||
// This file is part of Leaflet.Geodesic.
|
||
// Copyright (C) 2017 Henry Thasler
|
||
// based on code by Chris Veness Copyright (C) 2014 https://github.com/chrisveness/geodesy
|
||
//
|
||
// Leaflet.Geodesic is free software: you can redistribute it and/or modify
|
||
// it under the terms of the GNU General Public License as published by
|
||
// the Free Software Foundation, either version 3 of the License, or
|
||
// (at your option) any later version.
|
||
//
|
||
// Leaflet.Geodesic is distributed in the hope that it will be useful,
|
||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
// GNU General Public License for more details.
|
||
//
|
||
// You should have received a copy of the GNU General Public License
|
||
// along with Leaflet.Geodesic. If not, see <http://www.gnu.org/licenses/>.
|
||
|
||
|
||
/** Extend Number object with method to convert numeric degrees to radians */
|
||
if (typeof Number.prototype.toRadians === "undefined") {
|
||
Number.prototype.toRadians = function () {
|
||
return this * Math.PI / 180
|
||
}
|
||
}
|
||
|
||
/** Extend Number object with method to convert radians to numeric (signed) degrees */
|
||
if (typeof Number.prototype.toDegrees === "undefined") {
|
||
Number.prototype.toDegrees = function () {
|
||
return this * 180 / Math.PI
|
||
}
|
||
}
|
||
|
||
const INTERSECT_LNG = 179.999 // Lng used for intersection and wrap around on map edges
|
||
|
||
L.Geodesic = L.Polyline.extend({
|
||
options: {
|
||
color: "blue",
|
||
steps: 10,
|
||
dash: 1,
|
||
wrap: true
|
||
},
|
||
|
||
initialize: function (latlngs, options) {
|
||
this.options = this._merge_options(this.options, options)
|
||
this.datum = {}
|
||
this.datum.ellipsoid = {
|
||
a: 6378137,
|
||
b: 6356752.3142,
|
||
f: 1 / 298.257223563
|
||
} // WGS-84
|
||
this._latlngs = (this.options.dash < 1) ? this._generate_GeodesicDashed(
|
||
latlngs) : this._generate_Geodesic(latlngs)
|
||
L.Polyline.prototype.initialize.call(this, this._latlngs, this.options)
|
||
},
|
||
|
||
setLatLngs: function (latlngs) {
|
||
this._latlngs = (this.options.dash < 1) ? this._generate_GeodesicDashed(
|
||
latlngs) : this._generate_Geodesic(latlngs)
|
||
L.Polyline.prototype.setLatLngs.call(this, this._latlngs)
|
||
},
|
||
|
||
/**
|
||
* Calculates some statistic values of current geodesic multipolyline
|
||
* @returns (Object} Object with several properties (e.g. overall distance)
|
||
*/
|
||
getStats: function () {
|
||
let obj = {
|
||
distance: 0,
|
||
points: 0,
|
||
polygons: this._latlngs.length
|
||
},
|
||
poly, points
|
||
|
||
for (poly = 0; poly < this._latlngs.length; poly++) {
|
||
obj.points += this._latlngs[poly].length
|
||
for (points = 0; points < (this._latlngs[poly].length - 1); points++) {
|
||
obj.distance += this._vincenty_inverse(this._latlngs[poly][points],
|
||
this._latlngs[poly][points + 1]).distance
|
||
}
|
||
}
|
||
return obj
|
||
},
|
||
|
||
|
||
/**
|
||
* Creates geodesic lines from geoJson. Replaces all current features of this instance.
|
||
* Supports LineString, MultiLineString and Polygon
|
||
* @param {Object} geojson - geosjon as object.
|
||
*/
|
||
geoJson: function (geojson) {
|
||
|
||
let normalized = L.GeoJSON.asFeature(geojson)
|
||
let features = normalized.type === "FeatureCollection" ? normalized.features : [
|
||
normalized
|
||
]
|
||
this._latlngs = []
|
||
for (let feature of features) {
|
||
let geometry = feature.type === "Feature" ? feature.geometry :
|
||
feature,
|
||
coords = geometry.coordinates
|
||
|
||
switch (geometry.type) {
|
||
case "LineString":
|
||
this._latlngs.push(this._generate_Geodesic([L.GeoJSON.coordsToLatLngs(
|
||
coords, 0)]))
|
||
break
|
||
case "MultiLineString":
|
||
case "Polygon":
|
||
this._latlngs.push(this._generate_Geodesic(L.GeoJSON.coordsToLatLngs(
|
||
coords, 1)))
|
||
break
|
||
case "Point":
|
||
case "MultiPoint":
|
||
console.log("Dude, points can't be drawn as geodesic lines...")
|
||
break
|
||
default:
|
||
console.log("Drawing " + geometry.type +
|
||
" as a geodesic is not supported. Skipping...")
|
||
}
|
||
}
|
||
L.Polyline.prototype.setLatLngs.call(this, this._latlngs)
|
||
},
|
||
|
||
/**
|
||
* Creates a great circle. Replaces all current lines.
|
||
* @param {Object} center - geographic position
|
||
* @param {number} radius - radius of the circle in metres
|
||
*/
|
||
createCircle: function (center, radius) {
|
||
let polylineIndex = 0
|
||
let prev = {
|
||
lat: 0,
|
||
lng: 0,
|
||
brg: 0
|
||
}
|
||
let step
|
||
|
||
this._latlngs = []
|
||
this._latlngs[polylineIndex] = []
|
||
|
||
let direct = this._vincenty_direct(L.latLng(center), 0, radius, this.options
|
||
.wrap)
|
||
prev = L.latLng(direct.lat, direct.lng)
|
||
this._latlngs[polylineIndex].push(prev)
|
||
for (step = 1; step <= this.options.steps;) {
|
||
direct = this._vincenty_direct(L.latLng(center), 360 / this.options
|
||
.steps * step, radius, this.options.wrap)
|
||
let gp = L.latLng(direct.lat, direct.lng)
|
||
if (Math.abs(gp.lng - prev.lng) > 180) {
|
||
let inverse = this._vincenty_inverse(prev, gp)
|
||
let sec = this._intersection(prev, inverse.initialBearing, {
|
||
lat: -89,
|
||
lng: ((gp.lng - prev.lng) > 0) ? -INTERSECT_LNG : INTERSECT_LNG
|
||
}, 0)
|
||
if (sec) {
|
||
this._latlngs[polylineIndex].push(L.latLng(sec.lat, sec.lng))
|
||
polylineIndex++
|
||
this._latlngs[polylineIndex] = []
|
||
prev = L.latLng(sec.lat, -sec.lng)
|
||
this._latlngs[polylineIndex].push(prev)
|
||
} else {
|
||
polylineIndex++
|
||
this._latlngs[polylineIndex] = []
|
||
this._latlngs[polylineIndex].push(gp)
|
||
prev = gp
|
||
step++
|
||
}
|
||
} else {
|
||
this._latlngs[polylineIndex].push(gp)
|
||
prev = gp
|
||
step++
|
||
}
|
||
}
|
||
|
||
L.Polyline.prototype.setLatLngs.call(this, this._latlngs)
|
||
},
|
||
|
||
/**
|
||
* Creates a geodesic Polyline from given coordinates
|
||
* @param {Object} latlngs - One or more polylines as an array. See Leaflet doc about Polyline
|
||
* @returns (Object} An array of arrays of geographical points.
|
||
*/
|
||
_generate_Geodesic: function (latlngs) {
|
||
let _geo = [],
|
||
_geocnt = 0,
|
||
s, poly, points, pointA, pointB
|
||
|
||
for (poly = 0; poly < latlngs.length; poly++) {
|
||
_geo[_geocnt] = []
|
||
for (points = 0; points < (latlngs[poly].length - 1); points++) {
|
||
pointA = L.latLng(latlngs[poly][points])
|
||
pointB = L.latLng(latlngs[poly][points + 1])
|
||
if (pointA.equals(pointB)) {
|
||
continue;
|
||
}
|
||
let inverse = this._vincenty_inverse(pointA, pointB)
|
||
let prev = pointA
|
||
_geo[_geocnt].push(prev)
|
||
for (s = 1; s <= this.options.steps;) {
|
||
let direct = this._vincenty_direct(pointA, inverse.initialBearing,
|
||
inverse.distance / this.options.steps * s, this.options.wrap
|
||
)
|
||
let gp = L.latLng(direct.lat, direct.lng)
|
||
if (Math.abs(gp.lng - prev.lng) > 180) {
|
||
let sec = this._intersection(pointA, inverse.initialBearing, {
|
||
lat: -89,
|
||
lng: ((gp.lng - prev.lng) > 0) ? -INTERSECT_LNG : INTERSECT_LNG
|
||
}, 0)
|
||
if (sec) {
|
||
_geo[_geocnt].push(L.latLng(sec.lat, sec.lng))
|
||
_geocnt++
|
||
_geo[_geocnt] = []
|
||
prev = L.latLng(sec.lat, -sec.lng)
|
||
_geo[_geocnt].push(prev)
|
||
} else {
|
||
_geocnt++
|
||
_geo[_geocnt] = []
|
||
_geo[_geocnt].push(gp)
|
||
prev = gp
|
||
s++
|
||
}
|
||
} else {
|
||
_geo[_geocnt].push(gp)
|
||
prev = gp
|
||
s++
|
||
}
|
||
}
|
||
}
|
||
_geocnt++
|
||
}
|
||
return _geo
|
||
},
|
||
|
||
|
||
/**
|
||
* Creates a dashed geodesic Polyline from given coordinates - under work
|
||
* @param {Object} latlngs - One or more polylines as an array. See Leaflet doc about Polyline
|
||
* @returns (Object} An array of arrays of geographical points.
|
||
*/
|
||
_generate_GeodesicDashed: function (latlngs) {
|
||
let _geo = [],
|
||
_geocnt = 0,
|
||
s, poly, points
|
||
// _geo = latlngs; // bypass
|
||
|
||
for (poly = 0; poly < latlngs.length; poly++) {
|
||
_geo[_geocnt] = []
|
||
for (points = 0; points < (latlngs[poly].length - 1); points++) {
|
||
let inverse = this._vincenty_inverse(L.latLng(latlngs[poly][
|
||
points
|
||
]), L.latLng(latlngs[poly][points + 1]))
|
||
let prev = L.latLng(latlngs[poly][points])
|
||
_geo[_geocnt].push(prev)
|
||
for (s = 1; s <= this.options.steps;) {
|
||
let direct = this._vincenty_direct(L.latLng(latlngs[poly][
|
||
points
|
||
]), inverse.initialBearing, inverse.distance / this.options
|
||
.steps * s - inverse.distance / this.options.steps * (1 -
|
||
this.options.dash), this.options.wrap)
|
||
let gp = L.latLng(direct.lat, direct.lng)
|
||
if (Math.abs(gp.lng - prev.lng) > 180) {
|
||
let sec = this._intersection(L.latLng(latlngs[poly][points]),
|
||
inverse.initialBearing, {
|
||
lat: -89,
|
||
lng: ((gp.lng - prev.lng) > 0) ? -INTERSECT_LNG : INTERSECT_LNG
|
||
}, 0)
|
||
if (sec) {
|
||
_geo[_geocnt].push(L.latLng(sec.lat, sec.lng))
|
||
_geocnt++
|
||
_geo[_geocnt] = []
|
||
prev = L.latLng(sec.lat, -sec.lng)
|
||
_geo[_geocnt].push(prev)
|
||
} else {
|
||
_geocnt++
|
||
_geo[_geocnt] = []
|
||
_geo[_geocnt].push(gp)
|
||
prev = gp
|
||
s++
|
||
}
|
||
} else {
|
||
_geo[_geocnt].push(gp)
|
||
_geocnt++
|
||
let direct2 = this._vincenty_direct(L.latLng(latlngs[poly][
|
||
points
|
||
]), inverse.initialBearing, inverse.distance / this.options
|
||
.steps * s, this.options.wrap)
|
||
_geo[_geocnt] = []
|
||
_geo[_geocnt].push(L.latLng(direct2.lat, direct2.lng))
|
||
s++
|
||
}
|
||
}
|
||
}
|
||
_geocnt++
|
||
}
|
||
return _geo
|
||
},
|
||
|
||
|
||
/**
|
||
* Vincenty direct calculation.
|
||
* based on the work of Chris Veness (https://github.com/chrisveness/geodesy)
|
||
*
|
||
* @private
|
||
* @param {number} initialBearing - Initial bearing in degrees from north.
|
||
* @param {number} distance - Distance along bearing in metres.
|
||
* @returns (Object} Object including point (destination point), finalBearing.
|
||
*/
|
||
|
||
_vincenty_direct: function (p1, initialBearing, distance, wrap) {
|
||
var φ1 = p1.lat.toRadians(),
|
||
λ1 = p1.lng.toRadians();
|
||
var α1 = initialBearing.toRadians();
|
||
var s = distance;
|
||
|
||
var a = this.datum.ellipsoid.a,
|
||
b = this.datum.ellipsoid.b,
|
||
f = this.datum.ellipsoid.f;
|
||
|
||
var sinα1 = Math.sin(α1);
|
||
var cosα1 = Math.cos(α1);
|
||
|
||
var tanU1 = (1 - f) * Math.tan(φ1),
|
||
cosU1 = 1 / Math.sqrt((1 + tanU1 * tanU1)),
|
||
sinU1 = tanU1 * cosU1;
|
||
var σ1 = Math.atan2(tanU1, cosα1);
|
||
var sinα = cosU1 * sinα1;
|
||
var cosSqα = 1 - sinα * sinα;
|
||
var uSq = cosSqα * (a * a - b * b) / (b * b);
|
||
var A = 1 + uSq / 16384 * (4096 + uSq * (-768 + uSq * (320 - 175 *
|
||
uSq)));
|
||
var B = uSq / 1024 * (256 + uSq * (-128 + uSq * (74 - 47 * uSq)));
|
||
|
||
var σ = s / (b * A),
|
||
σʹ, iterations = 0;
|
||
do {
|
||
var cos2σM = Math.cos(2 * σ1 + σ);
|
||
var sinσ = Math.sin(σ);
|
||
var cosσ = Math.cos(σ);
|
||
var Δσ = B * sinσ * (cos2σM + B / 4 * (cosσ * (-1 + 2 * cos2σM *
|
||
cos2σM) -
|
||
B / 6 * cos2σM * (-3 + 4 * sinσ * sinσ) * (-3 + 4 * cos2σM *
|
||
cos2σM)));
|
||
σʹ = σ;
|
||
σ = s / (b * A) + Δσ;
|
||
} while (Math.abs(σ - σʹ) > 1e-12 && ++iterations);
|
||
|
||
var x = sinU1 * sinσ - cosU1 * cosσ * cosα1;
|
||
var φ2 = Math.atan2(sinU1 * cosσ + cosU1 * sinσ * cosα1, (1 - f) *
|
||
Math.sqrt(sinα * sinα + x * x));
|
||
var λ = Math.atan2(sinσ * sinα1, cosU1 * cosσ - sinU1 * sinσ * cosα1);
|
||
var C = f / 16 * cosSqα * (4 + f * (4 - 3 * cosSqα));
|
||
var L = λ - (1 - C) * f * sinα *
|
||
(σ + C * sinσ * (cos2σM + C * cosσ * (-1 + 2 * cos2σM * cos2σM)));
|
||
|
||
if (wrap)
|
||
var λ2 = (λ1 + L + 3 * Math.PI) % (2 * Math.PI) - Math.PI; // normalise to -180...+180
|
||
else
|
||
var λ2 = (λ1 + L); // do not normalize
|
||
|
||
var revAz = Math.atan2(sinα, -x);
|
||
|
||
return {
|
||
lat: φ2.toDegrees(),
|
||
lng: λ2.toDegrees(),
|
||
finalBearing: revAz.toDegrees()
|
||
};
|
||
},
|
||
|
||
/**
|
||
* Vincenty inverse calculation.
|
||
* based on the work of Chris Veness (https://github.com/chrisveness/geodesy)
|
||
*
|
||
* @private
|
||
* @param {LatLng} p1 - Latitude/longitude of start point.
|
||
* @param {LatLng} p2 - Latitude/longitude of destination point.
|
||
* @returns {Object} Object including distance, initialBearing, finalBearing.
|
||
* @throws {Error} If formula failed to converge.
|
||
*/
|
||
_vincenty_inverse: function (p1, p2) {
|
||
var φ1 = p1.lat.toRadians(),
|
||
λ1 = p1.lng.toRadians();
|
||
var φ2 = p2.lat.toRadians(),
|
||
λ2 = p2.lng.toRadians();
|
||
|
||
var a = this.datum.ellipsoid.a,
|
||
b = this.datum.ellipsoid.b,
|
||
f = this.datum.ellipsoid.f;
|
||
|
||
var L = λ2 - λ1;
|
||
var tanU1 = (1 - f) * Math.tan(φ1),
|
||
cosU1 = 1 / Math.sqrt((1 + tanU1 * tanU1)),
|
||
sinU1 = tanU1 * cosU1;
|
||
var tanU2 = (1 - f) * Math.tan(φ2),
|
||
cosU2 = 1 / Math.sqrt((1 + tanU2 * tanU2)),
|
||
sinU2 = tanU2 * cosU2;
|
||
|
||
var λ = L,
|
||
λʹ, iterations = 0;
|
||
do {
|
||
var sinλ = Math.sin(λ),
|
||
cosλ = Math.cos(λ);
|
||
var sinSqσ = (cosU2 * sinλ) * (cosU2 * sinλ) + (cosU1 * sinU2 -
|
||
sinU1 * cosU2 * cosλ) * (cosU1 * sinU2 - sinU1 * cosU2 * cosλ);
|
||
var sinσ = Math.sqrt(sinSqσ);
|
||
if (sinσ == 0) return 0; // co-incident points
|
||
var cosσ = sinU1 * sinU2 + cosU1 * cosU2 * cosλ;
|
||
var σ = Math.atan2(sinσ, cosσ);
|
||
var sinα = cosU1 * cosU2 * sinλ / sinσ;
|
||
var cosSqα = 1 - sinα * sinα;
|
||
var cos2σM = cosσ - 2 * sinU1 * sinU2 / cosSqα;
|
||
if (isNaN(cos2σM)) cos2σM = 0; // equatorial line: cosSqα=0 (§6)
|
||
var C = f / 16 * cosSqα * (4 + f * (4 - 3 * cosSqα));
|
||
λʹ = λ;
|
||
λ = L + (1 - C) * f * sinα * (σ + C * sinσ * (cos2σM + C * cosσ * (-
|
||
1 + 2 * cos2σM * cos2σM)));
|
||
} while (Math.abs(λ - λʹ) > 1e-12 && ++iterations < 100);
|
||
if (iterations >= 100) {
|
||
console.log("Formula failed to converge. Altering target position.")
|
||
return this._vincenty_inverse(p1, {
|
||
lat: p2.lat,
|
||
lng: p2.lng - 0.01
|
||
})
|
||
// throw new Error('Formula failed to converge');
|
||
}
|
||
|
||
var uSq = cosSqα * (a * a - b * b) / (b * b);
|
||
var A = 1 + uSq / 16384 * (4096 + uSq * (-768 + uSq * (320 - 175 *
|
||
uSq)));
|
||
var B = uSq / 1024 * (256 + uSq * (-128 + uSq * (74 - 47 * uSq)));
|
||
var Δσ = B * sinσ * (cos2σM + B / 4 * (cosσ * (-1 + 2 * cos2σM *
|
||
cos2σM) -
|
||
B / 6 * cos2σM * (-3 + 4 * sinσ * sinσ) * (-3 + 4 * cos2σM *
|
||
cos2σM)));
|
||
|
||
var s = b * A * (σ - Δσ);
|
||
|
||
var fwdAz = Math.atan2(cosU2 * sinλ, cosU1 * sinU2 - sinU1 * cosU2 *
|
||
cosλ);
|
||
var revAz = Math.atan2(cosU1 * sinλ, -sinU1 * cosU2 + cosU1 * sinU2 *
|
||
cosλ);
|
||
|
||
s = Number(s.toFixed(3)); // round to 1mm precision
|
||
return {
|
||
distance: s,
|
||
initialBearing: fwdAz.toDegrees(),
|
||
finalBearing: revAz.toDegrees()
|
||
};
|
||
},
|
||
|
||
|
||
/**
|
||
* Returns the point of intersection of two paths defined by point and bearing.
|
||
* based on the work of Chris Veness (https://github.com/chrisveness/geodesy)
|
||
*
|
||
* @param {LatLon} p1 - First point.
|
||
* @param {number} brng1 - Initial bearing from first point.
|
||
* @param {LatLon} p2 - Second point.
|
||
* @param {number} brng2 - Initial bearing from second point.
|
||
* @returns {Object} containing lat/lng information of intersection.
|
||
*
|
||
* @example
|
||
* var p1 = LatLon(51.8853, 0.2545), brng1 = 108.55;
|
||
* var p2 = LatLon(49.0034, 2.5735), brng2 = 32.44;
|
||
* var pInt = LatLon.intersection(p1, brng1, p2, brng2); // pInt.toString(): 50.9078°N, 4.5084°E
|
||
*/
|
||
_intersection: function (p1, brng1, p2, brng2) {
|
||
// see http://williams.best.vwh.net/avform.htm#Intersection
|
||
|
||
var φ1 = p1.lat.toRadians(),
|
||
λ1 = p1.lng.toRadians();
|
||
var φ2 = p2.lat.toRadians(),
|
||
λ2 = p2.lng.toRadians();
|
||
var θ13 = Number(brng1).toRadians(),
|
||
θ23 = Number(brng2).toRadians();
|
||
var Δφ = φ2 - φ1,
|
||
Δλ = λ2 - λ1;
|
||
|
||
var δ12 = 2 * Math.asin(Math.sqrt(Math.sin(Δφ / 2) * Math.sin(Δφ / 2) +
|
||
Math.cos(φ1) * Math.cos(φ2) * Math.sin(Δλ / 2) * Math.sin(Δλ /
|
||
2)));
|
||
if (δ12 == 0) return null;
|
||
|
||
// initial/final bearings between points
|
||
var θ1 = Math.acos((Math.sin(φ2) - Math.sin(φ1) * Math.cos(δ12)) /
|
||
(Math.sin(δ12) * Math.cos(φ1)));
|
||
if (isNaN(θ1)) θ1 = 0; // protect against rounding
|
||
var θ2 = Math.acos((Math.sin(φ1) - Math.sin(φ2) * Math.cos(δ12)) /
|
||
(Math.sin(δ12) * Math.cos(φ2)));
|
||
|
||
if (Math.sin(λ2 - λ1) > 0) {
|
||
var θ12 = θ1;
|
||
var θ21 = 2 * Math.PI - θ2;
|
||
} else {
|
||
var θ12 = 2 * Math.PI - θ1;
|
||
var θ21 = θ2;
|
||
}
|
||
|
||
var α1 = (θ13 - θ12 + Math.PI) % (2 * Math.PI) - Math.PI; // angle 2-1-3
|
||
var α2 = (θ21 - θ23 + Math.PI) % (2 * Math.PI) - Math.PI; // angle 1-2-3
|
||
|
||
if (Math.sin(α1) == 0 && Math.sin(α2) == 0) return null; // infinite intersections
|
||
if (Math.sin(α1) * Math.sin(α2) < 0) return null; // ambiguous intersection
|
||
|
||
//α1 = Math.abs(α1);
|
||
//α2 = Math.abs(α2);
|
||
// ... Ed Williams takes abs of α1/α2, but seems to break calculation?
|
||
|
||
var α3 = Math.acos(-Math.cos(α1) * Math.cos(α2) +
|
||
Math.sin(α1) * Math.sin(α2) * Math.cos(δ12));
|
||
var δ13 = Math.atan2(Math.sin(δ12) * Math.sin(α1) * Math.sin(α2),
|
||
Math.cos(α2) + Math.cos(α1) * Math.cos(α3))
|
||
var φ3 = Math.asin(Math.sin(φ1) * Math.cos(δ13) +
|
||
Math.cos(φ1) * Math.sin(δ13) * Math.cos(θ13));
|
||
var Δλ13 = Math.atan2(Math.sin(θ13) * Math.sin(δ13) * Math.cos(φ1),
|
||
Math.cos(δ13) - Math.sin(φ1) * Math.sin(φ3));
|
||
var λ3 = λ1 + Δλ13;
|
||
λ3 = (λ3 + 3 * Math.PI) % (2 * Math.PI) - Math.PI; // normalise to -180..+180º
|
||
|
||
return {
|
||
lat: φ3.toDegrees(),
|
||
lng: λ3.toDegrees()
|
||
};
|
||
},
|
||
|
||
/**
|
||
* Overwrites obj1's values with obj2's and adds obj2's if non existent in obj1
|
||
* @param obj1
|
||
* @param obj2
|
||
* @returns obj3 a new object based on obj1 and obj2
|
||
*/
|
||
_merge_options: function (obj1, obj2) {
|
||
let obj3 = {};
|
||
for (let attrname in obj1) {
|
||
obj3[attrname] = obj1[attrname];
|
||
}
|
||
for (let attrname in obj2) {
|
||
obj3[attrname] = obj2[attrname];
|
||
}
|
||
return obj3;
|
||
}
|
||
});
|
||
|
||
L.geodesic = function (latlngs, options) {
|
||
return new L.Geodesic(latlngs, options);
|
||
};
|