oprf_assets/Frigate/Nasal/guided-missiles.nas
2016-12-22 00:31:49 -08:00

1829 lines
65 KiB
Plaintext

###########################################################################
#######
####### Guided missiles code for Flightgear.
#######
####### License: GPL 2
#######
####### Authors:
####### XIII, 5N1N0B1, Nikolai V. Chr.
#######
####### In addition, some code is derived from work by:
####### David Culp, Vivian Meazza
#######
###########################################################################
var AcModel = props.globals.getNode("payload");
var OurHdg = props.globals.getNode("orientation/heading-deg");
var OurRoll = props.globals.getNode("orientation/roll-deg");
var OurPitch = props.globals.getNode("orientation/pitch-deg");
var HudReticleDev = props.globals.getNode("payload/armament/hud/reticle-total-deviation", 1);#polar coords
var HudReticleDeg = props.globals.getNode("payload/armament/hud/reticle-total-angle", 1);
var vol_weak_track = 0.10;
var vol_track = 0.15;
var update_loop_time = 0.000;
var FRAME_TIME = 1;
var REAL_TIME = 0;
var TRUE = 1;
var FALSE = 0;
var use_fg_default_hud = FALSE;
var MISSILE_STANDBY = -1;
var MISSILE_SEARCH = 0;
var MISSILE_LOCK = 1;
var MISSILE_FLYING = 2;
var g_fps = 9.80665 * M2FT;
var slugs_to_lbs = 32.1740485564;
#
# The radar will make sure to keep this variable updated.
# Whatever is targeted and ready to be fired upon, should be set here.
#
var contact = nil;
#
var AIM = {
#done
new : func (p, type = "AIM-9", sign = "Sidewinder") {
if(AIM.active[p] != nil) {
#do not make new missile logic if one exist for this pylon.
return -1;
}
var m = { parents : [AIM]};
# Args: p = Pylon.
m.type_lc = string.lc(type);
m.type = type;
m.status = MISSILE_STANDBY; # -1 = stand-by, 0 = searching, 1 = locked, 2 = fired.
m.free = 0; # 0 = status fired with lock, 1 = status fired but having lost lock.
m.trackWeak = 1;
m.prop = AcModel.getNode("armament/"~m.type_lc~"/").getChild("msl", 0 , 1);
m.SwSoundOnOff = AcModel.getNode("armament/"~m.type_lc~"/sound-on-off");
m.SwSoundVol = AcModel.getNode("armament/"~m.type_lc~"/sound-volume");
m.PylonIndex = m.prop.getNode("pylon-index", 1).setValue(p);
m.ID = p;
m.pylon_prop = props.globals.getNode("controls/armament").getChild("station", p+1);
m.Tgt = nil;
m.callsign = "Unknown";
m.update_track_time = 0;
m.seeker_dev_e = 0; # Seeker elevation, deg.
m.seeker_dev_h = 0; # Seeker horizon, deg.
m.curr_tgt_e = 0;
m.curr_tgt_h = 0;
m.init_tgt_e = 0;
m.init_tgt_h = 0;
m.target_dev_e = 0; # Target elevation, deg.
m.target_dev_h = 0; # Target horizon, deg.
m.track_signal_e = 0; # Seeker deviation change to keep constant angle (proportional navigation),
m.track_signal_h = 0; # this is directly used as input signal for the steering command.
m.t_coord = geo.Coord.new().set_latlon(0, 0, 0);
m.last_t_coord = m.t_coord;
m.before_last_t_coord = nil;
#m.next_t_coord = m.t_coord;
m.direct_dist_m = nil;
m.speed_m = 0;
# AIM specs:
m.aim9_fov_diam = getprop("payload/armament/"~m.type_lc~"/FCS-field-deg");
m.aim9_fov = m.aim9_fov_diam / 2;
m.max_detect_rng = getprop("payload/armament/"~m.type_lc~"/max-fire-range-nm");
m.max_seeker_dev = getprop("payload/armament/"~m.type_lc~"/seeker-field-deg") / 2;
m.force_lbs_1 = getprop("payload/armament/"~m.type_lc~"/thrust-lbf-stage-1");
m.force_lbs_2 = getprop("payload/armament/"~m.type_lc~"/thrust-lbf-stage-2");
m.stage_1_duration = getprop("payload/armament/"~m.type_lc~"/stage-1-duration-sec");
m.stage_2_duration = getprop("payload/armament/"~m.type_lc~"/stage-2-duration-sec");
m.weight_launch_lbs = getprop("payload/armament/"~m.type_lc~"/weight-launch-lbs");
m.weight_whead_lbs = getprop("payload/armament/"~m.type_lc~"/weight-warhead-lbs");
m.Cd_base = getprop("payload/armament/"~m.type_lc~"/drag-coeff");
m.eda = getprop("payload/armament/"~m.type_lc~"/drag-area");
m.max_g = getprop("payload/armament/"~m.type_lc~"/max-g");
m.searcher_beam_width = getprop("payload/armament/"~m.type_lc~"/searcher-beam-width");
m.arming_time = getprop("payload/armament/"~m.type_lc~"/arming-time-sec");
m.min_speed_for_guiding = getprop("payload/armament/"~m.type_lc~"/min-speed-for-guiding-mach");
m.selfdestruct_time = getprop("payload/armament/"~m.type_lc~"/self-destruct-time-sec");
m.guidance = getprop("payload/armament/"~m.type_lc~"/guidance");
m.all_aspect = getprop("payload/armament/"~m.type_lc~"/all-aspect");
m.vol_search = getprop("payload/armament/"~m.type_lc~"/vol-search");
m.angular_speed = getprop("payload/armament/"~m.type_lc~"/seeker-angular-speed-dps");
m.loft_alt = getprop("payload/armament/"~m.type_lc~"/loft-altitude");
m.min_dist = getprop("payload/armament/"~m.type_lc~"/min-fire-range-nm");
m.rail = getprop("payload/armament/"~m.type_lc~"/rail");
m.rail_dist_m = getprop("payload/armament/"~m.type_lc~"/rail-length-m");
m.rail_forward = getprop("payload/armament/"~m.type_lc~"/rail-point-forward");
m.class = getprop("payload/armament/"~m.type_lc~"/class");
m.aim_9_model = getprop("payload/armament/models")~type~"/"~m.type_lc~"-";
m.dt_last = 0;
# Find the next index for "models/model" and create property node.
# Find the next index for "ai/models/aim-9" and create property node.
# (M. Franz, see Nasal/tanker.nas)
var n = props.globals.getNode("models", 1);
var i = 0;
for (i = 0; 1==1; i += 1) {
if (n.getChild("model", i, 0) == nil) {
break;
}
}
m.model = n.getChild("model", i, 1);
n = props.globals.getNode("ai/models", 1);
for (i = 0; 1==1; i += 1) {
if (n.getChild(m.type_lc, i, 0) == nil) {
break;
}
}
m.ai = n.getChild(m.type_lc, i, 1);
m.ai.getNode("valid", 1).setBoolValue(1);
m.ai.getNode("name", 1).setValue(type);
m.ai.getNode("sign", 1).setValue(sign);
#m.model.getNode("collision", 1).setBoolValue(0);
#m.model.getNode("impact", 1).setBoolValue(0);
var id_model = m.aim_9_model ~ m.ID ~ ".xml";
m.model.getNode("path", 1).setValue(id_model);
m.life_time = 0;
# Create the AI position and orientation properties.
m.latN = m.ai.getNode("position/latitude-deg", 1);
m.lonN = m.ai.getNode("position/longitude-deg", 1);
m.altN = m.ai.getNode("position/altitude-ft", 1);
m.hdgN = m.ai.getNode("orientation/true-heading-deg", 1);
m.pitchN = m.ai.getNode("orientation/pitch-deg", 1);
m.rollN = m.ai.getNode("orientation/roll-deg", 1);
m.ac = nil;
m.coord = geo.Coord.new().set_latlon(0, 0, 0);
m.last_coord = nil;
m.before_last_coord = nil;
m.s_down = nil;
m.s_east = nil;
m.s_north = nil;
m.alt = nil;
m.pitch = nil;
m.hdg = nil;
m.density_alt_diff = 0;
m.max_g_current = m.max_g;
m.last_deviation_e = nil;
m.last_deviation_h = nil;
m.last_track_e = 0;
m.last_track_h = 0;
m.update_count = -1;
m.paused = 0;
m.last_tgt_h = nil;
m.last_tgt_e = nil;
m.old_speed_horz_fps = nil;
m.t_alt_delta_last_m = nil;
m.dist_last = nil;
m.dist_direct_last = nil;
m.last_t_course = nil;
m.last_t_elev_deg = nil;
m.last_cruise_or_loft = 0;
m.old_speed_fps = 0;
m.last_t_norm_speed = nil;
m.last_t_elev_norm_speed = nil;
m.dive_token = FALSE;
# cruise missiles
m.nextGroundElevation = 0; # next Ground Elevation
m.nextGroundElevationMem = [-10000, -1];
#rail
m.drop_time = 0;
m.rail_passed = FALSE;
m.x = 0;
m.y = 0;
m.z = 0;
m.rail_pos = 0;
m.rail_speed_into_wind = 0;
m.lastFlare = 0;
m.SwSoundOnOff.setBoolValue(FALSE);
m.SwSoundVol.setDoubleValue(m.vol_search);
me.trackWeak = 1;
return AIM.active[m.ID] = m;
},
#done
del: func {
#print("deleted");
me.model.remove();
me.ai.remove();
if (me.status == MISSILE_FLYING) {
delete(AIM.flying, me.flyID);
} else {
delete(AIM.active, me.ID);
}
},
# get Coord from body position. x,y,z must be in meters.
getGPS: func(x, y, z) {
# derived from Vivian's code in AIModel/submodel.cxx.
var ac_roll = getprop("orientation/roll-deg");
var ac_pitch = getprop("orientation/pitch-deg");
var ac_hdg = getprop("orientation/heading-deg");
me.ac = geo.aircraft_position();
var in = [0,0,0];
var trans = [[0,0,0],[0,0,0],[0,0,0]];
var out = [0,0,0];
in[0] = -x * M2FT;
in[1] = y * M2FT;
in[2] = z * M2FT;
# Pre-process trig functions:
var cosRx = math.cos(-ac_roll * D2R);
var sinRx = math.sin(-ac_roll * D2R);
var cosRy = math.cos(-ac_pitch * D2R);
var sinRy = math.sin(-ac_pitch * D2R);
var cosRz = math.cos(ac_hdg * D2R);
var sinRz = math.sin(ac_hdg * D2R);
# Set up the transform matrix:
trans[0][0] = cosRy * cosRz;
trans[0][1] = -1 * cosRx * sinRz + sinRx * sinRy * cosRz ;
trans[0][2] = sinRx * sinRz + cosRx * sinRy * cosRz;
trans[1][0] = cosRy * sinRz;
trans[1][1] = cosRx * cosRz + sinRx * sinRy * sinRz;
trans[1][2] = -1 * sinRx * cosRx + cosRx * sinRy * sinRz;
trans[2][0] = -1 * sinRy;
trans[2][1] = sinRx * cosRy;
trans[2][2] = cosRx * cosRy;
# Multiply the input and transform matrices:
out[0] = in[0] * trans[0][0] + in[1] * trans[0][1] + in[2] * trans[0][2];
out[1] = in[0] * trans[1][0] + in[1] * trans[1][1] + in[2] * trans[1][2];
out[2] = in[0] * trans[2][0] + in[1] * trans[2][1] + in[2] * trans[2][2];
# Convert ft to degrees of latitude:
out[0] = out[0] / (366468.96 - 3717.12 * math.cos(me.ac.lat() * D2R));
# Convert ft to degrees of longitude:
out[1] = out[1] / (365228.16 * math.cos(me.ac.lat() * D2R));
# Set submodel initial position:
var alat = me.ac.lat() + out[0];
var alon = me.ac.lon() + out[1];
var aalt = (me.ac.alt() * M2FT) + out[2];
var c = geo.Coord.new();
c.set_latlon(alat, alon, aalt * FT2M);
return c;
},
release: func() {
me.status = MISSILE_FLYING;
me.flyID = rand();
AIM.flying[me.flyID] = me;
delete(AIM.active, me.ID);
me.animation_flags_props();
# Get the A/C position and orientation values.
me.ac = geo.aircraft_position();
me.ac_init = geo.Coord.new(me.ac);
var ac_roll = getprop("orientation/roll-deg");# positive is banking right
var ac_pitch = getprop("orientation/pitch-deg");
var ac_hdg = getprop("orientation/heading-deg");
# Compute missile initial position relative to A/C center
me.x = me.pylon_prop.getNode("offsets/x-m").getValue();
me.y = me.pylon_prop.getNode("offsets/y-m").getValue();
me.z = me.pylon_prop.getNode("offsets/z-m").getValue();
var init_coord = me.getGPS(me.x, me.y, me.z);
# Set submodel initial position:
var alat = init_coord.lat();
var alon = init_coord.lon();
var aalt = init_coord.alt() * M2FT;
me.latN.setDoubleValue(alat);
me.lonN.setDoubleValue(alon);
me.altN.setDoubleValue(aalt);
me.hdgN.setDoubleValue(ac_hdg);
if (me.rail == FALSE) {
# align into wind (commented out since heavy wind make missiles lose sight of target.)
var alpha = getprop("orientation/alpha-deg");
var beta = getprop("orientation/side-slip-deg");# positive is air from right
var alpha_diff = alpha * math.cos(ac_roll*D2R) * ((ac_roll > 90 or ac_roll < -90)?-1:1) + beta * math.sin(ac_roll*D2R);
#alpha_diff = alpha > 0?alpha_diff:0;# not using alpha if its negative to avoid missile flying through aircraft.
#ac_pitch = ac_pitch - alpha_diff;
var beta_diff = beta * math.cos(ac_roll*D2R) * ((ac_roll > 90 or ac_roll < -90)?-1:1) - alpha * math.sin(ac_roll*D2R);
#ac_hdg = ac_hdg + beta_diff;
# drop distance in time
me.drop_time = math.sqrt(2*7/g_fps);# time to fall 7 ft to clear aircraft
}
me.pitchN.setDoubleValue(ac_pitch);
me.rollN.setDoubleValue(ac_roll);
#print("roll "~ac_roll~" on "~me.rollN.getPath());
me.coord.set_latlon(alat, alon, aalt * FT2M);
me.model.getNode("latitude-deg-prop", 1).setValue(me.latN.getPath());
me.model.getNode("longitude-deg-prop", 1).setValue(me.lonN.getPath());
me.model.getNode("elevation-ft-prop", 1).setValue(me.altN.getPath());
me.model.getNode("heading-deg-prop", 1).setValue(me.hdgN.getPath());
me.model.getNode("pitch-deg-prop", 1).setValue(me.pitchN.getPath());
me.model.getNode("roll-deg-prop", 1).setValue(me.rollN.getPath());
var loadNode = me.model.getNode("load", 1);
loadNode.setBoolValue(1);
# Get initial velocity vector (aircraft):
me.s_down = getprop("velocities/speed-down-fps");
me.s_east = getprop("velocities/speed-east-fps");
me.s_north = getprop("velocities/speed-north-fps");
if (me.rail == TRUE) {
if (me.rail_forward == FALSE) {
# rail is actually a tube pointing upward
me.rail_speed_into_wind = -getprop("velocities/wBody-fps");# wind from below
} else {
# rail is pointing forward
me.rail_speed_into_wind = getprop("velocities/uBody-fps");# wind from nose
}
}
#print("release speed down: "~me.s_down);
me.alt = aalt;
me.pitch = ac_pitch;
me.hdg = ac_hdg;
#print("p1 "~ac_pitch);
if (getprop("sim/flight-model") == "jsb") {
# currently not supported in Yasim
me.density_alt_diff = getprop("fdm/jsbsim/atmosphere/density-altitude") - aalt;
}
#print("air density diff alt = "~me.density_alt_diff);
#print("missile alt = "~aalt);
#me.smoke_prop.setBoolValue(1);
me.SwSoundVol.setDoubleValue(0);
me.trackWeak = 1;
#settimer(func { HudReticleDeg.setValue(0) }, 2);
#interpolate(HudReticleDev, 0, 2);
#loadNode.remove();
me.flight();
loadNode.remove();
},
drag: func (mach) {
# Adjust Cd by Mach number. The equations are based on curves
# for a conventional shell/bullet (no boat-tail).
#
# Derived from Davic Culps code in AIBallistic
var Cd = 0;
if (mach < 0.7) {
Cd = 0.0125 * mach + me.Cd_base;
} elsif (mach < 1.2 ) {
Cd = 0.3742 * math.pow(mach, 2) - 0.252 * mach + 0.0021 + me.Cd_base;
} else {
Cd = 0.2965 * math.pow(mach, -1.1506) + me.Cd_base;
}
return Cd;
},
drag_new: func (mach) {
# Nikolai V. Chr.: Made the drag calc more in line with big missiles as opposed to small bullets.
#
# When I start using this, all the drag coefficients for the missiles have to be reestimated, same for thrust.
#
var Cd = 0;
if (mach < 0.7) {
Cd = (0.0125 * mach + 0.20) * 5 * me.Cd_base;
} elsif (mach < 1.2 ) {
Cd = (0.3742 * math.pow(mach, 2) - 0.252 * mach + 0.0021 + 0.2 ) * 5 * me.Cd_base;
} else {
Cd = (0.2965 * math.pow(mach, -1.1506) + 0.2) * 5 * me.Cd_base;
}
return Cd;
},
flight: func {
#print();
if (me.Tgt.isValid() == FALSE) {
me.del();
return;
}
var dt = getprop("sim/time/delta-sec");#TODO: find out more about how this property works (most likely time since last time nasal timers were called)
if (dt == 0) {
#FG is likely paused
me.paused = 1;
settimer(func me.flight(), 0.00);
return;
}
#if just called from release() then dt is almost 0 (cannot be zero as we use it to divide with)
# It can also not be too small, then the missile will lag behind aircraft and seem to be fired from behind the aircraft.
#dt = dt/2;
var elapsed = systime();
if (me.paused == 1) {
# sim has been unpaused lets make sure dt becomes very small to let elapsed time catch up.
me.paused = 0;
me.dt_last = elapsed-0.02;
}
var init_launch = 0;
if (me.dt_last != 0) {
#if (getprop("sim/speed-up") == 1) {
dt = (elapsed - me.dt_last)*getprop("sim/speed-up");
#} else {
# dt = getprop("sim/time/delta-sec")*getprop("sim/speed-up");
#}
init_launch = 1;
if(dt <= 0) {
# to prevent pow floating point error in line:cdm = 0.2965 * math.pow(me.speed_m, -1.1506) + me.cd;
# could happen if the OS adjusts the clock backwards
dt = 0.00001;
}
}
me.dt_last = elapsed;
me.life_time += dt;
# record coords so we can give the latest nearest position for impact.
me.before_last_coord = geo.Coord.new(me.last_coord);
me.last_coord = geo.Coord.new(me.coord);
#print(dt);
#### Calculate speed vector before steering corrections.
# Rocket thrust. If dropped, then ignited after fall time of what is the equivalent of 7ft.
# If the rocket is 2 stage, then ignite the second stage when 1st has burned out.
var f_lbs = 0;# pounds force (lbf)
if (me.life_time > me.drop_time) {
f_lbs = me.force_lbs_1;
}
if (me.life_time > me.stage_1_duration + me.drop_time) {
f_lbs = me.force_lbs_2;
}
if (me.life_time > (me.drop_time + me.stage_1_duration + me.stage_2_duration)) {
f_lbs = 0;
}
if (f_lbs < 1) {
me.smoke_prop.setBoolValue(0);
} else {
me.smoke_prop.setBoolValue(1);
}
# Get total old speed.
var d_east_ft = me.s_east * dt;
var d_north_ft = me.s_north * dt;
var d_down_ft = me.s_down * dt;
var dist_h_ft = math.sqrt((d_east_ft*d_east_ft)+(d_north_ft*d_north_ft));
var total_s_ft = math.sqrt((dist_h_ft*dist_h_ft)+(d_down_ft*d_down_ft));
# get old attitude
var pitch_deg = me.pitch;
var hdg_deg = me.hdg;
if (me.rail == TRUE and me.rail_passed == FALSE) {
var u = getprop("velocities/uBody-fps");# wind from nose
var v = getprop("velocities/vBody-fps");# wind from side
var w = getprop("velocities/wBody-fps");# wind from below
var opposing_wind = u;
if (me.rail_forward == TRUE) {
pitch_deg = getprop("orientation/pitch-deg");
hdg_deg = getprop("orientation/heading-deg");
} else {
pitch_deg = 90;
opposing_wind = -w;
hdg_deg = me.Tgt.get_bearing();
}
var speed_on_rail = me.clamp(me.rail_speed_into_wind - opposing_wind, 0, 1000000);
var movement_on_rail = speed_on_rail * dt;
me.rail_pos = me.rail_pos + movement_on_rail;
if (me.rail_forward == TRUE) {
me.x = me.x - (movement_on_rail * FT2M);# negative cause positive is rear in body coordinates
} else {
me.z = me.z + (movement_on_rail * FT2M);# positive cause positive is up in body coordinates
}
#print("rail pos "~(me.rail_pos*FT2M));
}
# Get air density and speed of sound (fps):
#var alt_ft = me.altN.getValue(); don't declare this twice
var rs = rho_sndspeed(me.altN.getValue() + me.density_alt_diff);
var rho = rs[0];
var sound_fps = rs[1];
# density for 0ft and 50kft:
#print("0:"~rho_sndspeed(0)[0]); = 0.0023769
#print("50k:"~rho_sndspeed(50000)[0]); = 0.00036159
#
# a aim-9j can do 22G at sealevel, 13G at 50Kft
# 13G = 22G * 0.5909
#
# extra/inter-polation:
# f(x) = y1 + ((x - x1) / (x2 - x1)) * (y2 - y1)
# calculate its performance at current air density:
me.max_g_current = me.max_g+((rho-0.0023769)/(0.00036159-0.0023769))*(me.max_g*0.5909-me.max_g);
#print("Max G = "~me.max_g_current~" Rho = "~rho);
var old_speed_fps = total_s_ft / dt;
#print("aim "~old_speed_fps);
#print("ac "~(getprop("velocities/groundspeed-3D-kt")*KT2FPS));
me.old_speed_horz_fps = dist_h_ft / dt;
me.old_speed_fps = old_speed_fps;
if (me.rail == TRUE and me.rail_passed == FALSE) {
# if missile is still on rail, we replace the speed, with the speed into the wind from nose on the rail.
old_speed_fps = me.rail_speed_into_wind;
}
me.speed_m = old_speed_fps / sound_fps;
var Cd = me.drag_new(me.speed_m);
# Add drag to the total speed using Standard Atmosphere (15C sealevel temperature);
# rho is adjusted for altitude in environment.rho_sndspeed(altitude),
# Acceleration = thrust/mass - drag/mass;
var mass = me.weight_launch_lbs / slugs_to_lbs;
var acc = f_lbs / mass;
var q = 0.5 * rho * old_speed_fps * old_speed_fps;# dynamic pressure
var drag_acc = (Cd * q * me.eda) / mass;
# get total new speed (minus gravity)
var speed_change_fps = acc*dt - drag_acc*dt;
if(me.loft_alt != 0 and me.loft_alt < 10000)
{
# detect terrain for use in terrain following
me.nextGroundElevationMem[1] -= 1;
var geoPlus2 = nextGeoloc(me.coord.lat(), me.coord.lon(), me.hdg, old_speed_fps, dt*5);
var geoPlus3 = nextGeoloc(me.coord.lat(), me.coord.lon(), me.hdg, old_speed_fps, dt*10);
var geoPlus4 = nextGeoloc(me.coord.lat(), me.coord.lon(), me.hdg, old_speed_fps, dt*20);
#var geoPlus5 = nextGeoloc(me.coord.lat(), me.coord.lon(), me.hdg, old_speed_fps, dt*30);
var e1 = geo.elevation(me.coord.lat(), me.coord.lon());# This is done, to make sure is does not decline before it has passed obstacle.
var e2 = geo.elevation(geoPlus2.lat(), geoPlus2.lon());# This is the main one.
var e3 = geo.elevation(geoPlus3.lat(), geoPlus3.lon());# This is an extra, just in case there is an high cliff it needs longer time to climb.
var e4 = geo.elevation(geoPlus4.lat(), geoPlus4.lon());
#var e5 = geo.elevation(geoPlus5.lat(), geoPlus5.lon());
if (e1 != nil) {
me.nextGroundElevation = e1;
} else {
print("nil terrain, blame terrasync! Cruise-missile keeping altitude.");
}
if (e2 != nil and e2 > me.nextGroundElevation) {
me.nextGroundElevation = e2;
if (e2 > me.nextGroundElevationMem[0] or me.nextGroundElevationMem[1] < 0) {
me.nextGroundElevationMem[0] = e2;
me.nextGroundElevationMem[1] = 5;
}
}
if (me.nextGroundElevationMem[0] > me.nextGroundElevation) {
me.nextGroundElevation = me.nextGroundElevationMem[0];
}
if (e3 != nil and e3 > me.nextGroundElevation) {
me.nextGroundElevation = e3;
}
if (e4 != nil and e4 > me.nextGroundElevation) {
me.nextGroundElevation = e4;
}
#if (e5 != nil and e5 > me.nextGroundElevation) {
# me.nextGroundElevation = e5;
#}
}
#print("alt "~alt_ft);
#### Guidance.
if ( me.status == MISSILE_FLYING and me.free == FALSE and me.life_time > me.drop_time) {
if (me.rail == FALSE or me.rail_passed == TRUE) {
var success = me.guide(dt);
if (success == FALSE) {
return;
}
}
#print("steering "~me.track_signal_e~" deg up");
#Here will be set the max angle of pitch and the max angle of heading to avoid G overload
var myG = steering_speed_G(me.track_signal_e, me.track_signal_h, old_speed_fps, dt);
if(me.max_g_current < myG)
{
var MyCoef = max_G_Rotation(me.track_signal_e, me.track_signal_h, old_speed_fps, dt, me.max_g_current);
me.track_signal_e = me.track_signal_e * MyCoef;
me.track_signal_h = me.track_signal_h * MyCoef;
#print(sprintf("G1 %.2f", myG));
var myG2 = steering_speed_G(me.track_signal_e, me.track_signal_h, old_speed_fps, dt);
#print(sprintf("G2 %.2f", myG)~sprintf(" - Coeff %.2f", MyCoef));
#print(sprintf("Missile pulling almost max G: %.1f G", myG2));
}
#print(sprintf("G %.1f", myG));
if (me.all_aspect == 1 or me.rear_aspect() == 1) {
pitch_deg += me.track_signal_e;
hdg_deg += me.track_signal_h;
me.last_track_e = me.track_signal_e;
me.last_track_h = me.track_signal_h;
} else {
me.last_track_e = 0;
me.last_track_h = 0;
print("Heat seeking missile lost lock, attempting to reaquire..");
}
#print(sprintf("%.1f deg elev command done, desired pitch: %.1f deg", me.track_signal_e, pitch_deg));
#print(sprintf("%.1f deg bear command done", me.last_track_h));
#print("Still Tracking : Elevation ",me.track_signal_e,"Heading ",me.track_signal_h," Gload : ", myG );
}
# If we add gravity while the missile is guiding, the gravity speed will be added to total speed,
# which next update will be added in the direction the missile points, which we do not want.
# therefore only real gravity drop is added to gravity bombs.
var grav_bomb = FALSE;
if (me.force_lbs_1 == 0 and me.force_lbs_2 == 0) {
grav_bomb == TRUE;
}
#print("p "~pitch_deg);
# Break speed change down total speed to North, East and Down components.
var speed_down_fps = - math.sin(pitch_deg * D2R) * (speed_change_fps + old_speed_fps);
var speed_horizontal_fps = math.cos(pitch_deg * D2R) * (speed_change_fps + old_speed_fps);
var speed_north_fps = math.cos(hdg_deg * D2R) * speed_horizontal_fps;
var speed_east_fps = math.sin(hdg_deg * D2R) * speed_horizontal_fps;
if (me.rail == TRUE and me.rail_passed == FALSE) {
# missile still on rail, lets calculate its speed relative to the wind coming in from the aircraft nose.
me.rail_speed_into_wind = me.rail_speed_into_wind + speed_change_fps;
}
if (grav_bomb == TRUE) {
# true gravity acc
speed_down_fps += g_fps * dt;
}
#var speed_down_fps = speed_down_change_fps;# + me.s_down
#var speed_north_fps = speed_north_change_fps;# + me.s_north
#var speed_east_fps = speed_east_change_fps;# + me.s_east
#var speed_horizontal_fps = math.sqrt(speed_north_fps*speed_north_fps+speed_east_fps*speed_east_fps);
#print("change: down="~speed_down_change_fps~" north="~speed_north_change_fps~" east="~speed_east_change_fps);
#print("new: down="~speed_down_fps~" north="~speed_north_fps~" east="~speed_east_fps);
#print("speed horz: "~speed_horizontal_fps~" (old: "~(dist_h_ft/dt)~")");
#print("speed: new="~new_speed_fps~" old="~old_speed_fps);
#if (new_speed_fps < 0) {
# drag can theoretically make the speed less than 0, this will prevent that from happening.
# new_speed_fps = 0;
#}
# Calculate altitude and elevation velocity vector (no incidence here).
#pitch_deg = math.atan2( speed_down_fps, speed_horizontal_fps ) * R2D;
# this is commented, cause the missile just falls due to gravity, it doesn't pitch
# a real missile would pitch ofc. but then have to calc how fuel affects CoG and its inertia/momentum
#
#me.pitch = pitch_deg;
#pitch_deg = me.pitch;
var dist_h_m = speed_horizontal_fps * dt * FT2M;
var alt_ft = me.altN.getValue() - ((speed_down_fps + g_fps * dt * !grav_bomb) * dt);
var new_speed_fps = math.sqrt(speed_horizontal_fps*speed_horizontal_fps+speed_down_fps*speed_down_fps);
#print(".");
#print(me.s_down);
#print(speed_down_fps);
#print(me.altN.getValue());
#print(alt_ft);
if (me.rail == FALSE or me.rail_passed == TRUE) {
# misssile not on rail, lets move it to next waypoint
me.coord.apply_course_distance(hdg_deg, dist_h_m);
me.coord.set_alt(alt_ft * FT2M);
} else {
# missile on rail, lets move it on the rail
new_speed_fps = me.rail_speed_into_wind;
me.coord = me.getGPS(me.x, me.y, me.z);
alt_ft = me.coord.alt() * M2FT;
}
# performance logging:
#setprop("logging/missile/dist-m", me.ac_init.distance_to(me.coord));
#setprop("logging/missile/alt-m", alt_ft * FT2M);
#setprop("logging/missile/speed-m", me.speed_m*1000);
#setprop("logging/missile/drag-lbf", Cd * q * me.eda);
#setprop("logging/missile/thrust-lbf", f_lbs);
me.latN.setDoubleValue(me.coord.lat());
me.lonN.setDoubleValue(me.coord.lon());
me.altN.setDoubleValue(alt_ft);
me.pitchN.setDoubleValue(pitch_deg);
me.hdgN.setDoubleValue(hdg_deg);
# log missiles to unicsv
#setprop("/logging/missile/latitude-deg", me.coord.lat());
#setprop("/logging/missile/longitude-deg", me.coord.lon());
#setprop("/logging/missile/altitude-ft", alt_ft);
#setprop("/logging/missile/t-latitude-deg", me.t_coord.lat());
#setprop("/logging/missile/t-longitude-deg", me.t_coord.lon());
#setprop("/logging/missile/t-altitude-ft", me.t_coord.alt()*M2FT);
# set radar properties for use in selection view and HUD tracks.
var self = geo.aircraft_position();
me.ai.getNode("radar/bearing-deg", 1).setDoubleValue(self.course_to(me.coord));
var angleInv = me.clamp(self.distance_to(me.coord)/self.direct_distance_to(me.coord), -1, 1);
me.ai.getNode("radar/elevation-deg", 1).setDoubleValue((self.alt()>me.coord.alt()?-1:1)*math.acos(angleInv)*R2D);
me.ai.getNode("velocities/true-airspeed-kt",1).setDoubleValue(new_speed_fps * FPS2KT);
#### Proximity detection.
if ( me.status == MISSILE_FLYING and (me.rail == FALSE or me.rail_passed == TRUE)) {
#### check if the missile can keep the lock.
if ( me.free == FALSE ) {
var g = steering_speed_G(me.track_signal_e, me.track_signal_h, old_speed_fps, dt);
# Uncomment this line to check stats while flying:
#
#print(sprintf("Mach %02.1f", me.speed_m)~sprintf(" , time %03.1f s", me.life_time)~sprintf(" , thrust %03.1f lbf", f_lbs)~sprintf(" , G-force %02.2f", g));
#print(sprintf("Alt %05.1f", alt_ft));
if ( g > me.max_g_current and init_launch != 0) {
#print("lost lock "~g~"G");
# Target unreachable, fly free.
me.free = 1;
print("Missile attempted to pull too many G, it broke.");
}
if (me.guidance == "heat") {
var flareNode = me.Tgt.getFlareNode();
if (flareNode != nil) {
var flareString = flareNode.getValue();
if (flareString != nil) {
var flareVector = split(":", flareString);
if (flareVector != nil and size(flareVector) == 2 and flareVector[1] == "flare") {
var flareNumber = num(flareVector[0]);
if (flareNumber != nil and flareNumber != me.lastFlare) {
# target has released a new flare, lets check if it fools us
me.lastFlare = flareNumber;
var aspect = me.aspect() / 180;
var fooled = rand() < (0.2 + 0.1 * aspect);
# 20% chance to be fooled, extra up till 10% chance added if front aspect
if (fooled) {
# fooled by the flare
print("Missile fooled by flare");
me.free = 1;
} else {
print("Missile ignored flare");
}
}
}
}
}
}
}
var v = me.poximity_detection();
if (v == FALSE) {
#print("exploded");
# We exploded, and start the sound propagation towards the plane
me.sndSpeed = sound_fps;
me.sndDistance = 0;
me.dt_last = systime();
me.sndPropagate();
return;
}
}
# record the velocities for the next loop.
me.s_north = speed_north_fps;
me.s_east = speed_east_fps;
me.s_down = speed_down_fps;
me.alt = alt_ft;
me.pitch = pitch_deg;
me.hdg = hdg_deg;
if (me.rail == FALSE or me.rail_pos > me.rail_dist_m * M2FT) {
me.rail_passed = TRUE;
#print("rail passed");
}
settimer(func me.flight(), update_loop_time, REAL_TIME);
},
# If is heat-seeking rear-aspect-only missile, check if it has good view on engine(s) and can keep lock.
rear_aspect: func () {
var offset = me.aspect();
if (offset < 45) {
# clear view of engine heat, keep the lock
rearAspect = 1;
} else {
# the greater angle away from clear engine view the greater chance of losing lock.
var offset_away = offset - 45;
var probability = offset_away/135;
rearAspect = rand() > probability;
}
#print ("RB-24J deviation from full rear-aspect: "~sprintf("%01.1f", offset)~" deg, keep IR lock on engine: "~rearAspect);
return rearAspect;# 1: keep lock, 0: lose lock
},
aspect: func () {
var rearAspect = 0;
var t_dist_m = me.coord.distance_to(me.t_coord);
var alt_delta_m = me.coord.alt() - me.t_coord.alt();
var elev_deg = math.atan2( alt_delta_m, t_dist_m ) * R2D;
var elevation_offset = elev_deg - me.Tgt.get_Pitch();
var course = me.t_coord.course_to(me.coord);
var heading_offset = course - me.Tgt.get_heading();
#
while (heading_offset < -180) {
heading_offset += 360;
}
while (heading_offset > 180) {
heading_offset -= 360;
}
while (elevation_offset < -180) {
elevation_offset += 360;
}
while (elevation_offset > 180) {
elevation_offset -= 360;
}
elevation_offset = math.abs(elevation_offset);
heading_offset = 180 - math.abs(heading_offset);
var offset = math.max(elevation_offset, heading_offset);
return offset;
},
# navigation and guidance
guide: func(dt) {
if (!me.Tgt.isValid()) {
# Lost of lock due to target disapearing:
# destroy missile
#print("invalid");
me.del();
return FALSE;
}
#print("track");
# Time interval since lock time or last track loop.
if (dt != nil) {
# Status = launched. Compute target position relative to seeker head.
# Get target position.
var t_alt = me.Tgt.get_altitude();
me.t_coord.set_latlon(me.Tgt.get_Latitude(), me.Tgt.get_Longitude(), t_alt * FT2M);
# Calculate current target elevation and azimut deviation.
var t_dist_m = me.coord.distance_to(me.t_coord);
var t_alt_delta_m = (t_alt - me.alt) * FT2M;
var t_elev_deg = math.atan2( t_alt_delta_m, t_dist_m ) * R2D;
me.curr_tgt_e = t_elev_deg - me.pitch;
var (t_course, dst) = courseAndDistance(me.coord, me.t_coord);
#var t_course = me.coord.course_to(me.t_coord);
me.curr_tgt_h = t_course - me.hdg;
#print();
#print(sprintf("Altitude above launch platform = %.1f ft", M2FT * (me.coord.alt()-me.ac.alt())));
# Compute gain to reduce target deviation to match an optimum 3 deg
# This augments steering by an additional 10 deg per second during
# the trajectory stage 1 seconds.
# Then, keep track of deviations at the end of these two initial 2 seconds.
var e_gain = 1;
var h_gain = 1;
if(me.curr_tgt_h < -180) {
me.curr_tgt_h += 360;
}
if(me.curr_tgt_h > 180) {
me.curr_tgt_h -= 360;
}
#print("tgt alt: "~t_alt~" me alt: "~me.alt);
#print(" absolute elevation: "~t_elev_deg~" relative elevation: "~me.curr_tgt_e);
#print(" absolute bearing: "~t_course~" relative bearing: "~me.curr_tgt_h);
#print(" distance along curvature: "~t_dist_m~" meter");
if(me.speed_m < me.min_speed_for_guiding) {
# it doesn't guide at lower speeds
e_gain = 0;
h_gain = 0;
me.update_count = -1;
#print("Not guiding (too low speed)");
} elsif (me.guidance == "semi-radar" and me.is_painted(me.Tgt) == FALSE) {
# if its semi-radar guided and the target is no longer painted
e_gain = 0;
h_gain = 0;
me.update_count = -1;
print("Not guiding (lost radar reflection, trying to reaquire)");
} elsif (me.curr_tgt_e > me.max_seeker_dev or me.curr_tgt_e < (-1 * me.max_seeker_dev)
or me.curr_tgt_h > me.max_seeker_dev or me.curr_tgt_h < (-1 * me.max_seeker_dev)) {
# target is not in missile seeker view anymore
print("Target is not in missile seeker view anymore");
me.free = 1;
e_gain = 0;
h_gain = 0;
}
var dev_e = me.curr_tgt_e;#
var dev_h = me.curr_tgt_h;#
#print(sprintf("curr: elev=%.1f", dev_e)~sprintf(" head=%.1f", dev_h));
if (me.last_deviation_e != nil) {
# its not our first seeker head move
me.update_count += 1;
# calculate if the seeker can keep up with the angular change of the target
# missile own movement is subtracted from this change due to seeker being on gyroscope
var dve_dist = dev_e - me.last_deviation_e + me.last_track_e;
var dvh_dist = dev_h - me.last_deviation_h + me.last_track_h;
var deviation_per_sec = math.sqrt(dve_dist*dve_dist+dvh_dist*dvh_dist)/dt;
if (deviation_per_sec > me.angular_speed) {
#print(sprintf("last-elev=%.1f", me.last_deviation_e)~sprintf(" last-elev-adj=%.1f", me.last_track_e));
#print(sprintf("last-head=%.1f", me.last_deviation_h)~sprintf(" last-head-adj=%.1f", me.last_track_h));
# lost lock due to angular speed limit
print(sprintf("%.1f deg/s too big angular change for seeker head.", deviation_per_sec));
#print(dt);
me.free = 1;
e_gain = 0;
h_gain = 0;
}
} else {
me.update_count = 0;
}
me.last_deviation_e = dev_e;
me.last_deviation_h = dev_h;
######################################
### cruise, loft, cruise-missile ###
######################################
var loft_angle = 15;# notice Shinobi uses 26.5651 degs, but Raider1 found a source saying 10-20 degs.
var loft_minimum = 10;# miles
var cruise_minimum = 7.5;# miles
var cruise_or_loft = 0;
if(me.loft_alt != 0 and me.loft_alt < 10000) {
# this is for Air to ground/sea cruise missile (SCALP, Taurus, Tomahawk...)
var Daground = 0;# zero for sealevel in case target is ship. Don't shoot A/S missiles over terrain. :)
if(me.class == "A/G") {
Daground = me.nextGroundElevation * M2FT;
}
var loft_alt = me.loft_alt;
if (t_dist_m < me.old_speed_fps * 4 * FT2M and t_dist_m > me.old_speed_fps * 2.5 * FT2M) {
# the missile lofts a bit at the end to avoid APN to slam it into ground before target is reached.
# end here is between 2.5-4 seconds
loft_alt = me.loft_alt*2;
}
if (t_dist_m > me.old_speed_fps * 2.5 * FT2M) {# need to give the missile time to do final navigation
# it's 1 or 2 seconds for this kinds of missiles...
var t_alt_delta_ft = (loft_alt + Daground - me.alt);
#print("var t_alt_delta_m : "~t_alt_delta_m);
if(loft_alt + Daground > me.alt) {
# 200 is for a very short reaction to terrain
#print("Moving up");
dev_e = -me.pitch + math.atan2(t_alt_delta_ft, me.old_speed_fps * dt * 5) * R2D;
} else {
# that means a dive angle of 22.5° (a bit less
# coz me.alt is in feet) (I let this alt in feet on purpose (more this figure is low, more the future pitch is high)
#print("Moving down");
var slope = me.clamp(t_alt_delta_ft / 300, -5, 0);# the lower the desired alt is, the steeper the slope.
dev_e = -me.pitch + me.clamp(math.atan2(t_alt_delta_ft, me.old_speed_fps * dt * 5) * R2D, slope, 0);
}
cruise_or_loft = 1;
} elsif (t_dist_m > 500) {
# we put 9 feets up the target to avoid ground at the
# last minute...
#print("less than 1000 m to target");
#dev_e = -me.pitch + math.atan2(t_alt_delta_m + 100, t_dist_m) * R2D;
#cruise_or_loft = 1;
} else {
#print("less than 500 m to target");
}
if (cruise_or_loft == 1) {
#print(" pitch "~me.pitch~" + dev_e "~dev_e);
}
} elsif (me.loft_alt != 0 and t_dist_m * M2NM > loft_minimum
and t_elev_deg < loft_angle #and t_elev_deg > -7.5
and me.dive_token == FALSE) {
# stage 1 lofting: due to target is more than 10 miles out and we havent reached
# our desired cruising alt, and the elevation to target is less than lofting angle.
# The -7.5 limit, is so the seeker don't lose track of target when lofting.
if (me.coord.alt() * M2FT < me.loft_alt) {
dev_e = -me.pitch + loft_angle;
#print(sprintf("Lofting %.1f degs, dev is %.1f", loft_angle, dev_e));
} else {
me.dive_token = TRUE;
#print("Cruise token");
}
cruise_or_loft = 1;
} elsif (me.rail == TRUE and me.rail_forward == FALSE and t_dist_m * M2NM > cruise_minimum and me.dive_token == FALSE) {
# tube launched missile turns towards target
dev_e = -me.pitch + t_elev_deg;
#print("Turning, desire "~t_elev_deg~" degs pitch.");
cruise_or_loft = 1;
if (math.abs(me.curr_tgt_e) < 5) {
me.dive_token = TRUE;
#print("Is last turn, APN takes it from here..")
}
} elsif (t_elev_deg < 0 and me.life_time < me.stage_1_duration+me.stage_2_duration+me.drop_time
and t_dist_m * M2NM > cruise_minimum) {
# stage 1/2 cruising: keeping altitude since target is below and more than 5 miles out
var attitude = math.asin((g_fps * dt)/me.old_speed_fps)*R2D;
dev_e = -me.pitch + attitude;
#print("Cruising, desire "~attitude~" degs pitch.");
cruise_or_loft = 1;
me.dive_token = TRUE;
}
###########################################
### augmented proportional navigation ###
###########################################
var dist_curr = me.coord.distance_to(me.t_coord);
var dist_curr_direct = me.coord.direct_distance_to(me.t_coord);
if (h_gain != 0 and me.dist_last != nil and me.last_tgt_h != nil) {
# augmented proportional navigation for heading
var horz_closing_rate_fps = me.clamp((me.dist_last - dist_curr)*M2FT/dt, 0.1, 1000000);#clamped due to cruise missiles that can fly slower than target.
var proportionality_constant = 3;#ja37.clamp(me.map(me.speed_m, 2, 5, 5, 3), 3, 5);#
#setprop("payload/armament/factor-pro2", proportionality_constant);
var c_dv = t_course-me.last_t_course;
if(c_dv < -180) {
c_dv += 360;
}
if(c_dv > 180) {
c_dv -= 360;
}
var line_of_sight_rate_rps = D2R*c_dv/dt;
# calculate target acc as normal to LOS line:
var t_heading = me.Tgt.get_heading();
var t_pitch = me.Tgt.get_Pitch();
var t_speed = me.Tgt.get_Speed()*KT2FPS;#true airspeed
var t_horz_speed = t_speed - math.abs(math.sin(t_pitch*D2R)*t_speed);
var t_LOS_norm_head = t_course + 90;
var t_LOS_norm_speed = math.cos((t_LOS_norm_head - t_heading)*D2R)*t_horz_speed;
if (me.last_t_norm_speed == nil) {
me.last_t_norm_speed = t_LOS_norm_speed;
}
var t_LOS_norm_acc = (t_LOS_norm_speed - me.last_t_norm_speed)/dt;
me.last_t_norm_speed = t_LOS_norm_speed;
# acceleration perpendicular to instantaneous line of sight in feet/sec^2
var acc_sideways_ftps2 = proportionality_constant*line_of_sight_rate_rps*horz_closing_rate_fps+proportionality_constant*t_LOS_norm_acc/2;
# now translate that sideways acc to an angle:
var velocity_vector_length_fps = me.old_speed_horz_fps;
var commanded_sideways_vector_length_fps = acc_sideways_ftps2*dt;
dev_h = math.atan2(commanded_sideways_vector_length_fps, velocity_vector_length_fps)*R2D;
#print(sprintf("LOS-rate=%.2f rad/s - closing-rate=%.1f ft/s",line_of_sight_rate_rps,horz_closing_rate_fps));
#print(sprintf("commanded-perpendicular-acceleration=%.1f ft/s^2", acc_sideways_ftps2));
#print(sprintf("horz leading by %.1f deg, commanding %.1f deg", me.curr_tgt_h, dev_h));
if (cruise_or_loft == 0 and me.last_cruise_or_loft == 0) {
# augmented proportional navigation for elevation
var vert_closing_rate_fps = me.clamp((me.dist_direct_last - dist_curr_direct)*M2FT/dt,0.1,1000000);
var line_of_sight_rate_up_rps = D2R*(t_elev_deg-me.last_t_elev_deg)/dt;
# calculate target acc as normal to LOS line: (up acc is positive)
var t_approach_bearing = t_course + 180;
var t_horz_speed_away_from_missile = -math.cos((t_approach_bearing - t_heading)*D2R)* t_horz_speed;
var t_horz_comp_speed = math.cos((90+t_elev_deg)*D2R)*t_horz_speed_away_from_missile;
var t_vert_comp_speed = math.sin(t_pitch*D2R)*t_speed*math.cos(t_elev_deg*D2R);
var t_LOS_elev_norm_speed = t_horz_comp_speed + t_vert_comp_speed;
if (me.last_t_elev_norm_speed == nil) {
me.last_t_elev_norm_speed = t_LOS_elev_norm_speed;
}
var t_LOS_elev_norm_acc = (t_LOS_elev_norm_speed - me.last_t_elev_norm_speed)/dt;
me.last_t_elev_norm_speed = t_LOS_elev_norm_speed;
var acc_upwards_ftps2 = proportionality_constant*line_of_sight_rate_up_rps*vert_closing_rate_fps+proportionality_constant*t_LOS_elev_norm_acc/2;
velocity_vector_length_fps = me.old_speed_fps;
var commanded_upwards_vector_length_fps = acc_upwards_ftps2*dt;
dev_e = math.atan2(commanded_upwards_vector_length_fps, velocity_vector_length_fps)*R2D;
#print(sprintf("vert leading by %.1f deg", me.curr_tgt_e));
}
}
me.dist_last = dist_curr;
me.dist_direct_last = dist_curr_direct;
me.t_alt_delta_last_m = t_alt_delta_m;
me.last_tgt_h = me.curr_tgt_h;
me.last_tgt_e = me.curr_tgt_e;
me.track_signal_e = dev_e * e_gain;
me.track_signal_h = dev_h * h_gain;
#print(sprintf("%.1f deg elevate command", me.track_signal_e));
#print(sprintf("%.1f deg bearing command, %.1f deg lead", me.track_signal_h, me.h_add));
me.last_t_course = t_course;
me.last_t_elev_deg = t_elev_deg;
me.last_cruise_or_loft = cruise_or_loft;
#print ("**** curr_tgt_e = ", me.curr_tgt_e," curr_tgt_h = ", me.curr_tgt_h, " me.track_signal_e = ", me.track_signal_e," me.track_signal_h = ", me.track_signal_h);
}
return TRUE;
},
map: func (value, leftMin, leftMax, rightMin, rightMax) {
# Figure out how 'wide' each range is
var leftSpan = leftMax - leftMin;
var rightSpan = rightMax - rightMin;
# Convert the left range into a 0-1 range (float)
var valueScaled = (value - leftMin) / leftSpan;
# Convert the 0-1 range into a value in the right range.
return rightMin + (valueScaled * rightSpan);
},
poximity_detection: func {
var cur_dir_dist_m = me.coord.direct_distance_to(me.t_coord);
# Get current direct distance.
if ( me.direct_dist_m != nil and me.life_time > me.arming_time) {
#print("distance to target_m = "~cur_dir_dist_m~" prev_distance to target_m = "~me.direct_dist_m);
if ( cur_dir_dist_m > me.direct_dist_m and cur_dir_dist_m < 250) {
#print("passed target");
# Distance to target increase, trigger explosion.
me.explode("Passed target.");
return FALSE;
#} #elsif (cur_dir_dist_m < 15) {
# print("proximity fuse activated.");
#within killing distance, explode
#(this might not be how the real thing does, but due to this only being called every frame, might miss otherwise)
# me.explode();
# return(0);
}# elsif (me.free == 1 and cur_dir_dist_m < m.prox_dist) {
#print("Magnetic fuse active.");
# lost lock, magnetic detector checks if close enough to explode
#me.explode();
#return(0);
#}
if (me.life_time > me.selfdestruct_time) {
me.explode("Selfdestructed.");
return FALSE;
}
}
####Ground interaction
var ground = geo.elevation(me.coord.lat(), me.coord.lon());
#print("Ground :",ground);
if(ground != nil and me.direct_dist_m != nil)
{
if(ground > me.coord.alt()) {
me.explode("Hit terrain.");
return FALSE;
}
}
me.before_last_t_coord = geo.Coord.new(me.last_t_coord);
me.last_t_coord = geo.Coord.new(me.t_coord);
me.direct_dist_m = cur_dir_dist_m;
return TRUE;
},
explode: func (reason) {
# Get missile relative position to the target at last frame.
var t_bearing_deg = me.last_t_coord.course_to(me.last_coord);
var t_delta_alt_m = me.last_coord.alt() - me.last_t_coord.alt();
var new_t_alt_m = me.t_coord.alt() + t_delta_alt_m;
var t_dist_m = me.direct_dist_m;
var min_distance = me.direct_dist_m;
var explosion_coord = me.last_coord;
#print("min1 "~min_distance);
#print("last_t to t : "~me.last_t_coord.direct_distance_to(me.t_coord));
#print("last to current: "~me.last_coord.direct_distance_to(me.coord));
for (var i = 0.05; i < 1; i += 0.05) {
var t_coord = me.interpolate(me.last_t_coord, me.t_coord, i);
var coord = me.interpolate(me.last_coord, me.coord, i);
var dist = coord.direct_distance_to(t_coord);
if (dist < min_distance) {
min_distance = dist;
explosion_coord = coord;
}
}
#print("min2 "~min_distance);
if (me.before_last_coord != nil and me.before_last_t_coord != nil) {
for (var i = 0.05; i < 1; i += 0.05) {
var t_coord = me.interpolate(me.before_last_t_coord, me.last_t_coord, i);
var coord = me.interpolate(me.before_last_coord, me.last_coord, i);
var dist = coord.direct_distance_to(t_coord);
if (dist < min_distance) {
min_distance = dist;
explosion_coord = coord;
}
}
}
me.coord = explosion_coord;
#print("min3 "~min_distance);
# Create impact coords from this previous relative position applied to target current coord.
me.t_coord.apply_course_distance(t_bearing_deg, t_dist_m);
me.t_coord.set_alt(new_t_alt_m);
var wh_mass = me.weight_whead_lbs / slugs_to_lbs;
#print("FOX2: me.direct_dist_m = ", me.direct_dist_m, " time ",getprop("sim/time/elapsed-sec"));
impact_report(me.t_coord, wh_mass, "missile"); # pos, alt, mass_slug,(speed_mps)
var phrase = sprintf( me.type~" exploded: %01.1f", min_distance) ~ " meters from: " ~ me.callsign;
print(phrase~" Reason: "~reason~sprintf(" time %.1f", me.life_time));
if (min_distance < 650000 ) {
if (getprop("payload/armament/msg")) {
setprop("/sim/multiplay/chat", armament.defeatSpamFilter(phrase));
} else {
setprop("/sim/messages/atc", phrase);
}
}
me.ai.getNode("valid", 1).setBoolValue(0);
me.animate_explosion();
me.Tgt = nil;
},
interpolate: func (start, end, fraction) {
var x = (start.x()*(1-fraction)+end.x()*fraction);
var y = (start.y()*(1-fraction)+end.y()*fraction);
var z = (start.z()*(1-fraction)+end.z()*fraction);
var c = geo.Coord.new();
c.set_xyz(x,y,z);
return c;
},
# aircraft searching for lock
search: func {
if ( me.status == MISSILE_FLYING ) {
me.SwSoundVol.setDoubleValue(0);
me.SwSoundOnOff.setBoolValue(FALSE);
return;
} elsif ( me.status == MISSILE_STANDBY ) {
# Stand by.
me.SwSoundVol.setDoubleValue(0);
me.SwSoundOnOff.setBoolValue(FALSE);
me.trackWeak = 1;
return;
} elsif ( me.status > MISSILE_SEARCH ) {
# Locked or fired.
return;
}
#print("search");
# search.
if (1==1 or contact != me.Tgt) {
#print("search2");
if (contact != nil and contact.isValid() == TRUE and
( (contact.get_type() == radar_logic.SURFACE and me.class == "A/G")
or (contact.get_type() == radar_logic.AIR and me.class == "A/A")
or (contact.get_type() == radar_logic.MARINE and me.class == "A/G"))) {
#print("search3");
var tgt = contact; # In the radar range and horizontal field.
var rng = tgt.get_range();
var total_elev = deviation_normdeg(OurPitch.getValue(), tgt.getElevation()); # deg.
var total_horiz = deviation_normdeg(OurHdg.getValue(), tgt.get_bearing()); # deg.
# Check if in range and in the (square shaped here) seeker FOV.
var abs_total_elev = math.abs(total_elev);
var abs_dev_deg = math.abs(total_horiz);
if ((me.guidance != "semi-radar" or me.is_painted(tgt) == TRUE)
and rng < me.max_detect_rng and abs_total_elev < me.aim9_fov and abs_dev_deg < me.aim9_fov ) {
#print("search4");
me.status = MISSILE_LOCK;
me.SwSoundOnOff.setBoolValue(TRUE);
me.SwSoundVol.setDoubleValue(vol_weak_track);
me.trackWeak = 1;
me.Tgt = tgt;
me.callsign = me.Tgt.get_Callsign();
var time = props.globals.getNode("/sim/time/elapsed-sec", 1).getValue();
me.update_track_time = time;
settimer(func me.update_lock(), 0.1);
return;
} else {
me.Tgt = nil;
}
} else {
me.Tgt = nil;
}
}
me.SwSoundVol.setDoubleValue(me.vol_search);
me.SwSoundOnOff.setBoolValue(TRUE);
me.trackWeak = 1;
settimer(func me.search(), 0.1);
},
# Missile locked on target
update_lock: func() {
if ( me.Tgt == nil or me.status == MISSILE_FLYING) {
return TRUE;
}
if (me.status == MISSILE_SEARCH) {
# Status = searching.
#print("search commanded");
me.return_to_search();
return TRUE;
} elsif ( me.status == MISSILE_STANDBY ) {
# Status = stand-by.
me.reset_seeker();
me.SwSoundOnOff.setBoolValue(FALSE);
me.SwSoundVol.setDoubleValue(0);
me.trackWeak = 1;
return TRUE;
} elsif (!me.Tgt.isValid()) {
# Lost of lock due to target disapearing:
# return to search mode.
#print("invalid");
me.return_to_search();
return TRUE;
}
#print("lock");
# Time interval since lock time or last track loop.
var last_tgt_e = me.curr_tgt_e;
var last_tgt_h = me.curr_tgt_h;
if (me.status == MISSILE_LOCK) {
# Status = locked. Get target position relative to our aircraft.
me.curr_tgt_e = - deviation_normdeg(OurPitch.getValue(), me.Tgt.getElevation());
me.curr_tgt_h = - deviation_normdeg(OurHdg.getValue(), me.Tgt.get_bearing());
}
var time = props.globals.getNode("/sim/time/elapsed-sec", 1).getValue();
# Compute HUD reticle position.
if ( use_fg_default_hud == TRUE and me.status == MISSILE_LOCK ) {
var h_rad = (90 - me.curr_tgt_h) * D2R;
var e_rad = (90 - me.curr_tgt_e) * D2R;
var devs = develev_to_devroll(h_rad, e_rad);
var combined_dev_deg = devs[0];
var combined_dev_length = devs[1];
var clamped = devs[2];
if ( clamped ) { SW_reticle_Blinker.blink();}
else { SW_reticle_Blinker.cont();}
HudReticleDeg.setDoubleValue(combined_dev_deg);
HudReticleDev.setDoubleValue(combined_dev_length);
}
if (me.status != MISSILE_STANDBY ) {
var in_view = me.check_t_in_fov();
if (in_view == FALSE) {
#print("out of view");
me.return_to_search();
return TRUE;
}
# We are not launched yet: update_track() loops by itself at 10 Hz.
var dist = geo.aircraft_position().direct_distance_to(me.Tgt.get_Coord());
if (time - me.update_track_time > 1 and dist != nil and dist > (me.min_dist * NM2M)) {
# after 1 second we get solid track if target is further than minimum distance.
me.SwSoundOnOff.setBoolValue(TRUE);
me.SwSoundVol.setDoubleValue(vol_track);
me.trackWeak = 0;
} else {
me.SwSoundOnOff.setBoolValue(TRUE);
me.SwSoundVol.setDoubleValue(vol_weak_track);
me.trackWeak = 1;
}
if (contact == nil or (contact.getUnique() != nil and me.Tgt.getUnique() != nil and contact.getUnique() != me.Tgt.getUnique())) {
#print("oops ");
me.return_to_search();
return TRUE;
}
settimer(func me.update_lock(), 0.1);
}
return TRUE;
},
return_to_search: func {
me.status = MISSILE_SEARCH;
me.Tgt = nil;
me.SwSoundOnOff.setBoolValue(TRUE);
me.SwSoundVol.setDoubleValue(me.vol_search);
me.trackWeak = 1;
me.reset_seeker();
#print("return");
settimer(func me.search(), 0.1);
},
#
check_t_in_fov: func {
var total_elev = deviation_normdeg(OurPitch.getValue(), me.Tgt.getElevation()); # deg.
var total_horiz = deviation_normdeg(OurHdg.getValue(), me.Tgt.get_bearing()); # deg.
# Check if in range and in the (square shaped here) seeker FOV.
var abs_total_elev = math.abs(total_elev);
var abs_dev_deg = math.abs(total_horiz);
if (abs_total_elev < me.aim9_fov and abs_dev_deg < me.aim9_fov ) {
# Target out of FOV while still not launched, return to search loop.
return TRUE;
}
return FALSE;
# Used only when not launched.
# Compute seeker total angular position clamped to seeker max total angular rotation.
#me.seeker_dev_e += me.track_signal_e;
#me.seeker_dev_e = me.clamp_min_max(me.seeker_dev_e, me.max_seeker_dev);
#me.seeker_dev_h += me.track_signal_h;
#me.seeker_dev_h = me.clamp_min_max(me.seeker_dev_h, me.max_seeker_dev);
# Check target signal inside seeker FOV.
#var e_d = me.seeker_dev_e - me.aim9_fov;
#var e_u = me.seeker_dev_e + me.aim9_fov;
#var h_l = me.seeker_dev_h - me.aim9_fov;
#var h_r = me.seeker_dev_h + me.aim9_fov;
#if (me.status != MISSILE_FLYING and (me.curr_tgt_e < e_d or me.curr_tgt_e > e_u or me.curr_tgt_h < h_l or me.curr_tgt_h > h_r) ) {
# Target out of FOV while still not launched, return to search loop.
# return FALSE;
#}
#return TRUE;
},
#done
reset_steering: func {
me.track_signal_e = 0;
me.track_signal_h = 0;
},
is_painted: func (target) {
if(target != nil and target.isPainted() != nil and target.isPainted() == TRUE) {
return TRUE;
}
return FALSE;
},
reset_seeker: func {
me.curr_tgt_e = 0;
me.curr_tgt_h = 0;
me.seeker_dev_e = 0;
me.seeker_dev_h = 0;
settimer(func { HudReticleDeg.setDoubleValue(0) }, 2);
interpolate(HudReticleDev, 0, 2);
me.reset_steering()
},
#done
clamp_min_max: func (v, mm) {
if ( v < -mm ) {
v = -mm;
} elsif ( v > mm ) {
v = mm;
}
return(v);
},
clamp: func(v, min, max) { v < min ? min : v > max ? max : v },
animation_flags_props: func {
# Create animation flags properties.
var msl_path = "payload/armament/"~me.type_lc~"/flags/msl-id-" ~ me.ID;
me.msl_prop = props.globals.initNode( msl_path, 1, "BOOL", 1);
var smoke_path = "payload/armament/"~me.type_lc~"/flags/smoke-id-" ~ me.ID;
me.smoke_prop = props.globals.initNode( smoke_path, 0, "BOOL", 1);
var explode_path = "payload/armament/"~me.type_lc~"/flags/explode-id-" ~ me.ID;
me.explode_prop = props.globals.initNode( explode_path, 0, "BOOL", 1);
var explode_smoke_path = "payload/armament/"~me.type_lc~"/flags/explode-smoke-id-" ~ me.ID;
me.explode_smoke_prop = props.globals.initNode( explode_smoke_path, 0, "BOOL", 1);
var explode_sound_path = "payload/armament/flags/explode-sound-on-" ~ me.ID;;
me.explode_sound_prop = props.globals.initNode( explode_sound_path, 0, "BOOL", 1);
var explode_sound_vol_path = "payload/armament/flags/explode-sound-vol-" ~ me.ID;;
me.explode_sound_vol_prop = props.globals.initNode( explode_sound_vol_path, 0, "DOUBLE", 1);
},
#done
animate_explosion: func {
# a last position update to where the explosion happened:
me.latN.setDoubleValue(me.coord.lat());
me.lonN.setDoubleValue(me.coord.lon());
me.altN.setDoubleValue(me.coord.alt()*M2FT);
me.msl_prop.setBoolValue(0);
me.smoke_prop.setBoolValue(0);
me.explode_prop.setBoolValue(1);
settimer( func me.explode_prop.setBoolValue(0), 0.5 );
settimer( func me.explode_smoke_prop.setBoolValue(1), 0.5 );
settimer( func me.explode_smoke_prop.setBoolValue(0), 3 );
#var delay = me.Tgt.getNode("radar/range-nm").getValue()*4.689;
#settimer( func me.explode_sound_prop.setBoolValue(1), delay );
#settimer( func me.explode_sound_prop.setBoolValue(0), delay+3 );
},
sndPropagate: func {
var dt = getprop("sim/time/delta-sec");
if (dt == 0) {
#FG is likely paused
settimer(func me.sndPropagate(), 0.01);
return;
}
#dt = update_loop_time;
var elapsed = systime();
if (me.dt_last != 0) {
dt = (elapsed - me.dt_last) * getprop("sim/speed-up");
}
me.dt_last = elapsed;
me.ac = geo.aircraft_position();
var distance = me.coord.direct_distance_to(me.ac);
me.sndDistance = me.sndDistance + (me.sndSpeed * dt) * FT2M;
if(me.sndDistance > distance) {
var volume = math.pow(2.71828,(-.00025*(distance-1000)));
#print("explosion heard "~distance~"m vol:"~volume);
me.explode_sound_vol_prop.setDoubleValue(volume);
me.explode_sound_prop.setBoolValue(1);
settimer( func me.explode_sound_prop.setBoolValue(0), 3);
settimer( func me.del(), 4);
return;
} elsif (me.sndDistance > 5000) {
settimer(func { me.del(); }, 4 );
} else {
settimer(func me.sndPropagate(), 0.05);
return;
}
},
active: {},
flying: {},
};
# Create impact report.
#altitde-agl-ft DOUBLE
#impact
# elevation-m DOUBLE
# heading-deg DOUBLE
# latitude-deg DOUBLE
# longitude-deg DOUBLE
# pitch-deg DOUBLE
# roll-deg DOUBLE
# speed-mps DOUBLE
# type STRING
#valid "true" BOOL
var impact_report = func(pos, mass_slug, string) {
# Find the next index for "ai/models/model-impact" and create property node.
var n = props.globals.getNode("ai/models", 1);
for (var i = 0; 1; i += 1)
if (n.getChild(string, i, 0) == nil)
break;
var impact = n.getChild(string, i, 1);
impact.getNode("impact/elevation-m", 1).setDoubleValue(pos.alt());
impact.getNode("impact/latitude-deg", 1).setDoubleValue(pos.lat());
impact.getNode("impact/longitude-deg", 1).setDoubleValue(pos.lon());
impact.getNode("mass-slug", 1).setDoubleValue(mass_slug);
#impact.getNode("speed-mps", 1).setValue(speed_mps);
impact.getNode("valid", 1).setBoolValue(1);
impact.getNode("impact/type", 1).setValue("terrain");
var impact_str = "/ai/models/" ~ string ~ "[" ~ i ~ "]";
setprop("ai/models/model-impact", impact_str);
}
var steering_speed_G = func(steering_e_deg, steering_h_deg, s_fps, dt) {
# Get G number from steering (e, h) in deg, speed in ft/s.
var steer_deg = math.sqrt((steering_e_deg*steering_e_deg) + (steering_h_deg*steering_h_deg));
# next speed vector
var vector_next_x = math.cos(steer_deg*D2R)*s_fps;
var vector_next_y = math.sin(steer_deg*D2R)*s_fps;
# present speed vector
var vector_now_x = s_fps;
var vector_now_y = 0;
# subtract the vectors from each other
var dv = math.sqrt((vector_now_x - vector_next_x)*(vector_now_x - vector_next_x)+(vector_now_y - vector_next_y)*(vector_now_y - vector_next_y));
# calculate g-force
# dv/dt=a
var g = (dv/dt) / g_fps;
# old calc with circle:
#var radius_ft = math.abs(s_fps / math.sin(steer_deg*D2R));
#var g = ( (s_fps * s_fps) / radius_ft ) / g_fps;
#print("#### R = ", radius_ft, " G = ", g); ##########################################################
return g;
}
var semi_old_max_G_Rotation = func(steering_e_deg, steering_h_deg, s_fps, dt, gMax) {
for(var i = 1; i >= 0; i-=0.005) {
var new_g = steering_speed_G(steering_e_deg*i, steering_h_deg*i, s_fps, dt);
if (new_g < gMax) {
return i;
}
}
return 0;
}
var max_G_Rotation = func(steering_e_deg, steering_h_deg, s_fps, dt, gMax) {
var guess = 1;
var coef = 1;
var lastgoodguess = 1;
for(var i=1;i<25;i+=1){
coef = coef/2;
var new_g = steering_speed_G(steering_e_deg*guess, steering_h_deg*guess, s_fps, dt);
if (new_g < gMax) {
lastgoodguess = guess;
guess = guess + coef;
} else {
guess = guess - coef;
}
}
return lastgoodguess;
}
var old_max_G_Rotation = func(steering_e_deg, steering_h_deg, s_fps, dt,gMax) {
# Get G number from steering (e, h) in deg, speed in ft/s.
#This function is for calculate the maximum angle without overload G
var steer_deg = math.sqrt((steering_e_deg*steering_e_deg) + (steering_h_deg*steering_h_deg));
var radius_ft = math.abs(s_fps / math.cos((90 - steer_deg)*D2R));
var g = ( (s_fps * s_fps) / radius_ft ) / g_fps;
#Isolation of Radius
if (s_fps < 1) {
s_fps = 1;
}
var radius_ft2 = ( s_fps * s_fps) / (gMax * 0.95 * g_fps);
if (math.abs(s_fps / radius_ft2) < 1) {
var steer_rad_theoric = math.acos(math.abs(s_fps/radius_ft2));
var steer_deg_theoric = 90 - (steer_rad_theoric * R2D);
} else {
var steer_rad_theoric = 1;
var steer_deg_theoric = 1;
}
var radius_ft_th = math.abs(s_fps / math.cos((90 -steer_deg_theoric)*D2R));
var g_th = ( (s_fps * s_fps) / radius_ft_th ) / g_fps;
#print ("Max G ", gMax , " Actual G " , g, " steer_deg_theoric ", steer_deg_theoric, " G theoretic=", g_th);
return (steer_deg_theoric / steer_deg);
}
# HUD clamped target blinker
SW_reticle_Blinker = aircraft.light.new("payload/armament/hud/hud-sw-reticle-switch", [0.1, 0.1]);
setprop("payload/armament/hud/hud-sw-reticle-switch/enabled", 1);
var OurRoll = props.globals.getNode("orientation/roll-deg");
var eye_hud_m = 0.6;#pilot: -3.30 hud: -3.9
var hud_radius_m = 0.100;
#was in hud
var develev_to_devroll = func(dev_rad, elev_rad) {
var clamped = 0;
# Deviation length on the HUD (at level flight),
# 0.6686m = distance eye <-> virtual HUD screen.
var h_dev = eye_hud_m / ( math.sin(dev_rad) / math.cos(dev_rad) );
var v_dev = eye_hud_m / ( math.sin(elev_rad) / math.cos(elev_rad) );
# Angle between HUD center/top <-> HUD center/symbol position.
# -90° left, 0° up, 90° right, +/- 180° down.
var dev_deg = math.atan2( h_dev, v_dev ) * R2D;
# Correction with own a/c roll.
var combined_dev_deg = dev_deg - OurRoll.getValue();
# Lenght HUD center <-> symbol pos on the HUD:
var combined_dev_length = math.sqrt((h_dev*h_dev)+(v_dev*v_dev));
# clamp and squeeze the top of the display area so the symbol follow the egg shaped HUD limits.
var abs_combined_dev_deg = math.abs( combined_dev_deg );
var clamp = hud_radius_m;
if ( abs_combined_dev_deg >= 0 and abs_combined_dev_deg < 90 ) {
var coef = ( 90 - abs_combined_dev_deg ) * 0.00075;
if ( coef > 0.050 ) { coef = 0.050 }
clamp -= coef;
}
if ( combined_dev_length > clamp ) {
combined_dev_length = clamp;
clamped = 1;
}
var v = [combined_dev_deg, combined_dev_length, clamped];
return(v);
}
#was in radar
var deviation_normdeg = func(our_heading, target_bearing) {
var dev_norm = our_heading - target_bearing;
while (dev_norm < -180) dev_norm += 360;
while (dev_norm > 180) dev_norm -= 360;
return(dev_norm);
}
#was environment
var const_e = 2.71828183;
var rho_sndspeed = func(altitude) {
# Calculate density of air: rho
# at altitude (ft), using standard atmosphere,
# standard temperature T and pressure p.
var T = 0;
var p = 0;
if (altitude < 36152) {
# curve fits for the troposphere
T = 59 - 0.00356 * altitude;
p = 2116 * math.pow( ((T + 459.7) / 518.6) , 5.256);
} elsif ( 36152 < altitude and altitude < 82345 ) {
# lower stratosphere
T = -70;
p = 473.1 * math.pow( const_e , 1.73 - (0.000048 * altitude) );
} else {
# upper stratosphere
T = -205.05 + (0.00164 * altitude);
p = 51.97 * math.pow( ((T + 459.7) / 389.98) , -11.388);
}
var rho = p / (1718 * (T + 459.7));
# calculate the speed of sound at altitude
# a = sqrt ( g * R * (T + 459.7))
# where:
# snd_speed in feet/s,
# g = specific heat ratio, which is usually equal to 1.4
# R = specific gas constant, which equals 1716 ft-lb/slug/R
var snd_speed = math.sqrt( 1.4 * 1716 * (T + 459.7));
return [rho, snd_speed];
}
var nextGeoloc = func(lon, lat, heading, speed, dt, alt=100){
# lng & lat & heading, in degree, speed in fps
# this function should send back the futures lng lat
var distance = speed * dt * FT2M; # should be a distance in meters
#print("distance ", distance);
# much simpler than trigo
var NextGeo = geo.Coord.new().set_latlon(lon, lat, alt);
NextGeo.apply_course_distance(heading, distance);
return NextGeo;
}
#var AIM_instance = [nil, nil,nil,nil];#init aim-9
var spams = 0;
var defeatSpamFilter = func (str) {
spams += 1;
if (spams == 15) {
spams = 1;
}
str = str~":";
for (var i = 1; i <= spams; i+=1) {
str = str~".";
}
return str;
}