var Math = { # # Authors: Nikolai V. Chr, Axel Paccalin. # # Version 1.93 # # When doing euler coords. to cartesian: +x = forw, +y = left, +z = up. # FG struct. coords: +x = back, +y = right, +z = up. # # If euler to cartesian (with inverted heading) then: # cartesian vector will be x: north, y: west, z: skyward # # When doing euler angles (from pilots point of view): yaw = yaw left, pitch = rotate up, roll = roll right. # FG rotations: heading = yaw right, pitch = rotate up, roll = roll right. # clamp: func(v, min, max) { v < min ? min : v > max ? max : v }, convertCoords: func (x,y,z) { return [-x, -y, z]; }, convertAngles: func (heading,pitch,roll) { return [-heading, pitch, roll]; }, # returns direction in geo coordinate system vectorToGeoVector: func (a, coord) { me.handp = me.cartesianToEuler(a); me.end_dist_m = 100;# not too low for floating point precision. Not too high to get into earth curvature stuff. me.tgt_coord = geo.Coord.new(coord); if (me.handp[0] != nil) { me.tgt_coord.apply_course_distance(me.handp[0],me.end_dist_m); me.upamount = me.end_dist_m * math.tan(me.handp[1]*D2R); } elsif (me.handp[1] == 90) { me.upamount = me.end_dist_m; } else { me.upamount = -me.end_dist_m; } me.tgt_coord.set_alt(coord.alt()+me.upamount); return {"x":me.tgt_coord.x()-coord.x(), "y":me.tgt_coord.y()-coord.y(), "z":me.tgt_coord.z()-coord.z()}; }, # When observing another MP aircraft the groundspeed velocity info is in body frame, this method will convert it to cartesian vector. getCartesianVelocity: func (yaw_deg, pitch_deg, roll_deg, uBody_fps, vBody_fps, wBody_fps) { me.bodyVelocity = [uBody_fps, -vBody_fps, -wBody_fps]; return me.yawPitchRollVector(yaw_deg, pitch_deg, roll_deg, me.bodyVelocity); }, # angle between 2 vectors. Returns 0-180 degrees. angleBetweenVectors: func (a,b) { a = me.normalize(a); b = me.normalize(b); me.value = me.clamp((me.dotProduct(a,b)/me.magnitudeVector(a))/me.magnitudeVector(b),-1,1);#just to be safe in case some floating point error makes it out of bounds return R2D * math.acos(me.value); }, # length of vector magnitudeVector: func (a) { return math.sqrt(math.pow(a[0],2)+math.pow(a[1],2)+math.pow(a[2],2)); }, # dot product of 2 vectors dotProduct: func (a,b) { return a[0]*b[0]+a[1]*b[1]+a[2]*b[2]; }, # rotate a vector. Order: roll, pitch, yaw rollPitchYawVector: func (roll, pitch, yaw, vector) { me.rollM = me.rollMatrix(roll); me.pitchM = me.pitchMatrix(pitch); me.yawM = me.yawMatrix(yaw); me.rotation = me.multiplyMatrices(me.rollM, me.multiplyMatrices(me.pitchM, me.yawM)); return me.multiplyMatrixWithVector(me.rotation, vector); }, # rotate a vector. Order: yaw, pitch, roll (like an aircraft) yawPitchRollVector: func (yaw, pitch, roll, vector) { me.rollM = me.rollMatrix(roll); me.pitchM = me.pitchMatrix(pitch); me.yawM = me.yawMatrix(yaw); me.rotation = me.multiplyMatrices(me.yawM, me.multiplyMatrices(me.pitchM, me.rollM)); return me.multiplyMatrixWithVector(me.rotation, vector); }, # multiply 3x3 matrix with vector multiplyMatrixWithVector: func (matrix, vector) { return [matrix[0]*vector[0]+matrix[1]*vector[1]+matrix[2]*vector[2], matrix[3]*vector[0]+matrix[4]*vector[1]+matrix[5]*vector[2], matrix[6]*vector[0]+matrix[7]*vector[1]+matrix[8]*vector[2]]; }, # multiply 2 3x3 matrices multiplyMatrices: func (a,b) { return [a[0]*b[0]+a[1]*b[3]+a[2]*b[6], a[0]*b[1]+a[1]*b[4]+a[2]*b[7], a[0]*b[2]+a[1]*b[5]+a[2]*b[8], a[3]*b[0]+a[4]*b[3]+a[5]*b[6], a[3]*b[1]+a[4]*b[4]+a[5]*b[7], a[3]*b[2]+a[4]*b[5]+a[5]*b[8], a[6]*b[0]+a[7]*b[3]+a[8]*b[6], a[6]*b[1]+a[7]*b[4]+a[8]*b[7], a[6]*b[2]+a[7]*b[5]+a[8]*b[8]]; }, # matrix for rolling rollMatrix: func (roll) { roll = roll * D2R; return [1,0,0, 0,math.cos(roll),-math.sin(roll), 0,math.sin(roll), math.cos(roll)]; }, # matrix for pitching pitchMatrix: func (pitch) { pitch = pitch * D2R; return [math.cos(pitch),0,-math.sin(pitch), 0,1,0, math.sin(pitch),0,math.cos(pitch)]; }, # matrix for yawing yawMatrix: func (yaw) { yaw = yaw * D2R; return [math.cos(yaw),-math.sin(yaw),0, math.sin(yaw),math.cos(yaw),0, 0,0,1]; }, # vector to heading/pitch cartesianToEuler: func (vector) { me.horz = math.sqrt(vector[0]*vector[0]+vector[1]*vector[1]); if (me.horz != 0) { me.pitch = math.atan2(vector[2],me.horz)*R2D; me.hdg = math.asin(-vector[1]/me.horz)*R2D; if (vector[0] < 0) { # south if (me.hdg >= 0) { me.hdg = 180-me.hdg; } else { me.hdg = -180-me.hdg; } } me.hdg = geo.normdeg(me.hdg); } else { me.pitch = vector[2]>=0?90:-90; me.hdg = nil; } return [me.hdg, me.pitch]; }, # gives an vector that points up from fuselage eulerToCartesian3Z: func (yaw_deg, pitch_deg, roll_deg) { me.yaw = yaw_deg * D2R; me.pitch = pitch_deg * D2R; me.roll = roll_deg * D2R; me.x = -math.cos(me.yaw)*math.sin(me.pitch)*math.cos(me.roll) + math.sin(me.yaw)*math.sin(me.roll); me.y = -math.sin(me.yaw)*math.sin(me.pitch)*math.cos(me.roll) - math.cos(me.yaw)*math.sin(me.roll); me.z = math.cos(me.pitch)*math.cos(me.roll);#roll changed from sin to cos, since the rotation matrix is wrong return [me.x,me.y,me.z]; }, # gives an vector that points forward from fuselage eulerToCartesian3X: func (yaw_deg, pitch_deg, roll_deg) { me.yaw = yaw_deg * D2R; me.pitch = pitch_deg * D2R; me.roll = roll_deg * D2R; me.x = math.cos(me.yaw)*math.cos(me.pitch); me.y = math.sin(me.yaw)*math.cos(me.pitch); me.z = math.sin(me.pitch); return [me.x,me.y,me.z]; }, # gives an vector that points left from fuselage eulerToCartesian3Y: func (yaw_deg, pitch_deg, roll_deg) { me.yaw = yaw_deg * D2R; me.pitch = pitch_deg * D2R; me.roll = roll_deg * D2R; me.x = -math.cos(me.yaw)*math.sin(me.pitch)*math.sin(me.roll) - math.sin(me.yaw)*math.cos(me.roll); me.y = -math.sin(me.yaw)*math.sin(me.pitch)*math.sin(me.roll) + math.cos(me.yaw)*math.cos(me.roll); me.z = math.cos(me.pitch)*math.sin(me.roll); return [me.x,me.y,me.z]; }, # same as eulerToCartesian3X, except it needs no roll eulerToCartesian2: func (yaw_deg, pitch_deg) { me.yaw = yaw_deg * D2R; me.pitch = pitch_deg * D2R; me.x = math.cos(me.pitch) * math.cos(me.yaw); me.y = math.cos(me.pitch) * math.sin(me.yaw); me.z = math.sin(me.pitch); return [me.x,me.y,me.z]; }, #pitch from coord1 to coord2 in degrees (takes curvature of earth into effect.) getPitch: func (coord1, coord2) { if (coord1.lat() == coord2.lat() and coord1.lon() == coord2.lon()) { if (coord2.alt() > coord1.alt()) { return 90; } elsif (coord2.alt() < coord1.alt()) { return -90; } else { return 0; } } if (coord1.alt() != coord2.alt()) { me.d12 = coord1.direct_distance_to(coord2); me.coord3 = geo.Coord.new(coord1); me.coord3.set_alt(coord1.alt()-me.d12*0.5);# this will increase the area of the triangle so that rounding errors dont get in the way. me.d13 = coord1.alt()-me.coord3.alt(); if (me.d12 == 0) { # on top of each other, maybe rounding error.. return 0; } me.d32 = me.coord3.direct_distance_to(coord2); if (math.abs(me.d13)+me.d32 < me.d12) { # rounding errors somewhere..one triangle side is longer than other 2 sides combined. return 0; } # standard formula for a triangle where all 3 side lengths are known: me.len = (math.pow(me.d12, 2)+math.pow(me.d13,2)-math.pow(me.d32, 2))/(2 * me.d12 * math.abs(me.d13)); if (me.len < -1 or me.len > 1) { # something went wrong, maybe rounding error.. return 0; } me.angle = R2D * math.acos(me.len); me.pitch = -1* (90 - me.angle); #printf("d12 %.4f d32 %.4f d13 %.4f len %.4f pitch %.4f angle %.4f", me.d12, me.d32, me.d13, me.len, me.pitch, me.angle); return me.pitch; } else { # same altitude me.nc = geo.Coord.new(); me.nc.set_xyz(0,0,0); # center of earth me.radiusEarth = coord1.direct_distance_to(me.nc);# current distance to earth center me.d12 = coord1.direct_distance_to(coord2); # standard formula for a triangle where all 3 side lengths are known: me.len = (math.pow(me.d12, 2)+math.pow(me.radiusEarth,2)-math.pow(me.radiusEarth, 2))/(2 * me.d12 * me.radiusEarth); if (me.len < -1 or me.len > 1) { # something went wrong, maybe rounding error.. return 0; } me.angle = R2D * math.acos(me.len); me.pitch = -1* (90 - me.angle); return me.pitch; } }, # supply a normal to the plane, and a vector. The vector will be projected onto the plane, and that projection is returned as a vector. projVectorOnPlane: func (planeNormal, vector) { return me.minus(vector, me.product(me.dotProduct(vector,planeNormal)/math.pow(me.magnitudeVector(planeNormal),2), planeNormal)); }, # unary - vector opposite: func (v){ # author: Paccalin return [-v[0], -v[1], -v[2]]; }, # vector a - vector b minus: func (a, b) { return [a[0]-b[0], a[1]-b[1], a[2]-b[2]]; }, # vector a + vector b plus: func (a, b) { return [a[0]+b[0], a[1]+b[1], a[2]+b[2]]; }, # float * vector product: func (scalar, vector) { return [scalar*vector[0], scalar*vector[1], scalar*vector[2]] }, # print vector to console format: func (v) { return sprintf("(%.1f, %.1f, %.1f)",v[0],v[1],v[2]); }, # make vector length 1.0 normalize: func (v) { me.mag = me.magnitudeVector(v); return [v[0]/me.mag, v[1]/me.mag, v[2]/me.mag]; }, crossProduct: func (a,b) { return [a[1]*b[2]-a[2]*b[1], a[2]*b[0]-a[0]*b[2], a[0]*b[1]-a[1]*b[0]]; }, distance_from_point_to_line: func (coordP, coordL1, coordL2) { var P = [coordP.x(), coordP.y(), coordP.z()]; var L1 = [coordL1.x(), coordL1.y(), coordL1.z()]; var L2 = [coordL2.x(), coordL2.y(), coordL2.z()]; return me.magnitudeVector(me.crossProduct(me.minus(L2,L1), me.minus(L1,P)))/me.magnitudeVector(me.minus(L2,L1)); }, # Orthogonal projection of a vector `vec` onto another `ref` !!can throw an exception if the referential vector is null!!. orthogonalProjection: func(vec, ref){ # author: Paccalin me.op_refMag = me.magnitudeVector(ref); if(me.op_refMag == 0) die("Orthogonal projection on a null vector referential"); return me.dotProduct(vec, ref) / me.op_refMag; }, # Time at which two particles will be at shortest distance !!can throw an exception if the relative speed is null!! particleShortestDistTime: func (orig1, speed1, orig2, speed2) { # author: Paccalin # Compute the origin of the second particle in a referential positionally centered on the first particle. me.psdt_tgtOrig = me.minus(orig2, orig1); # Compute the speed of the second particle in a referential inertially based on the first particle. me.psdt_tgtSpeed = me.minus(speed2, speed1); # Project the origin of the particle1 referential onto the line supported by the particle2 trajectory in 1 unit of time. # And divide the result by the magnitude of the speed to have it normalized relative to the time. return me.orthogonalProjection(me.opposite(me.psdt_tgtOrig), me.psdt_tgtSpeed) / me.magnitudeVector(me.psdt_tgtSpeed); }, # rotation matrices # # #| 1 0 0 | #| 0 cos(roll) -sin(roll) | #| 0 sin(roll) cos(roll) | # #| cos(pitch) 0 -sin(pitch) | #| 0 1 0 | #| sin(pitch) 0 cos(pitch) | # #| cos(yaw) -sin(yaw) 0 | #| sin(yaw) cos(yaw) 0 | #| 0 0 1 | # # combined matrix from yaw, pitch, roll: # #| cos(yaw)cos(pitch) -cos(yaw)sin(pitch)sin(roll)-sin(yaw)cos(roll) -cos(yaw)sin(pitch)cos(roll)+sin(yaw)sin(roll)| #| sin(yaw)cos(pitch) -sin(yaw)sin(pitch)sin(roll)+cos(yaw)cos(roll) -sin(yaw)sin(pitch)cos(roll)-cos(yaw)sin(roll)| #| sin(pitch) cos(pitch)sin(roll) cos(pitch)cos(roll)| # # };