var clamp = func(v, min, max) { v < min ? min : v > max ? max : v } var encode3bits = func(first, second, third) { var integer = first; integer = integer + 2 * second; integer = integer + 4 * third; return integer; } var FALSE = 0; var TRUE = 1; var AIR = 0; var MARINE = 1; var SURFACE = 2; var ORDNANCE = 3; var Contact = { # For now only used in guided missiles, to make it compatible with Mirage 2000-5. new: func(c, class) { var obj = { parents : [Contact]}; #debug.benchmark("radar process1", func { obj.rdrProp = c.getNode("radar"); obj.oriProp = c.getNode("orientation"); obj.velProp = c.getNode("velocities"); obj.posProp = c.getNode("position"); obj.heading = obj.oriProp.getNode("true-heading-deg"); #}); #debug.benchmark("radar process2", func { obj.alt = obj.posProp.getNode("altitude-ft"); obj.lat = obj.posProp.getNode("latitude-deg"); obj.lon = obj.posProp.getNode("longitude-deg"); #}); #debug.benchmark("radar process3", func { #As it is a geo.Coord object, we have to update lat/lon/alt ->and alt is in meters obj.coord = geo.Coord.new(); obj.coord.set_latlon(obj.lat.getValue(), obj.lon.getValue(), obj.alt.getValue() * FT2M); #}); #debug.benchmark("radar process4", func { obj.pitch = obj.oriProp.getNode("pitch-deg"); obj.speed = obj.velProp.getNode("true-airspeed-kt"); obj.vSpeed = obj.velProp.getNode("vertical-speed-fps"); obj.callsign = c.getNode("callsign", 1); obj.shorter = c.getNode("model-shorter"); obj.orig_callsign = obj.callsign.getValue(); obj.name = c.getNode("name"); obj.sign = c.getNode("sign",1); obj.valid = c.getNode("valid"); obj.painted = c.getNode("painted"); obj.unique = c.getNode("unique"); obj.validTree = 0; #}); #debug.benchmark("radar process5", func { #obj.transponderID = c.getNode("instrumentation/transponder/transmitted-id"); #}); #debug.benchmark("radar process6", func { obj.acType = c.getNode("sim/model/ac-type"); obj.type = c.getName(); obj.index = c.getIndex(); obj.string = "ai/models/" ~ obj.type ~ "[" ~ obj.index ~ "]"; obj.shortString = obj.type ~ "[" ~ obj.index ~ "]"; #}); #debug.benchmark("radar process7", func { obj.range = obj.rdrProp.getNode("range-nm"); obj.bearing = obj.rdrProp.getNode("bearing-deg"); obj.elevation = obj.rdrProp.getNode("elevation-deg"); #}); obj.deviation = nil; obj.node = c; obj.class = class; obj.polar = [0,0]; obj.cartesian = [0,0]; return obj; }, isValid: func () { var valid = me.valid.getValue(); if (valid == nil) { valid = FALSE; } if (me.callsign.getValue() != me.orig_callsign) { valid = FALSE; } return valid; }, isPainted: func () { if (me.painted == nil) { me.painted = me.node.getNode("painted"); } if (me.painted == nil) { return nil; } var p = me.painted.getValue(); return p; }, getUnique: func () { if (me.unique == nil) { me.unique = me.node.getNode("unique"); } if (me.unique == nil) { return nil; } var u = me.unique.getValue(); return u; }, getElevation: func() { var e = 0; e = me.elevation.getValue(); if(e == nil or e == 0) { # AI/MP has no radar properties var self = geo.aircraft_position(); me.get_Coord(); var angleInv = clamp(self.distance_to(me.coord)/self.direct_distance_to(me.coord), -1, 1); e = (self.alt()>me.coord.alt()?-1:1)*math.acos(angleInv)*R2D; } return e; }, getNode: func () { return me.node; }, getFlareNode: func () { return me.node.getNode("sim/multiplay/generic/string[10]"); }, setPolar: func(dist, angle) { me.polar = [dist,angle]; }, setCartesian: func(x, y) { me.cartesian = [x,y]; }, remove: func(){ if(me.validTree != 0){ me.validTree.setValue(0); } }, get_Coord: func(){ me.coord.set_latlon(me.lat.getValue(), me.lon.getValue(), me.alt.getValue() * FT2M); var TgTCoord = geo.Coord.new(me.coord); return TgTCoord; }, get_Callsign: func(){ var n = me.callsign.getValue(); if(n != "" and n != nil) { return n; } if (me.name == nil) { me.name = me.getNode().getNode("name"); } if (me.name == nil) { n = ""; } else { n = me.name.getValue(); } if(n != "" and n != nil) { return n; } n = me.sign.getValue(); if(n != "" and n != nil) { return n; } return "UFO"; }, get_model: func(){ var n = ""; if (me.shorter == nil) { me.shorter = me.node.getNode("model-shorter"); } if (me.shorter != nil) { n = me.shorter.getValue(); } if(n != "" and n != nil) { return n; } n = me.sign.getValue(); if(n != "" and n != nil) { return n; } if (me.name == nil) { me.name = me.getNode().getNode("name"); } if (me.name == nil) { n = ""; } else { n = me.name.getValue(); } if(n != "" and n != nil) { return n; } return me.get_Callsign(); }, get_Speed: func(){ # return true airspeed var n = me.speed.getValue(); return n; }, get_Longitude: func(){ var n = me.lon.getValue(); return n; }, get_Latitude: func(){ var n = me.lat.getValue(); return n; }, get_Pitch: func(){ var n = me.pitch.getValue(); return n; }, get_heading : func(){ var n = me.heading.getValue(); if(n == nil) { n = 0; } return n; }, get_bearing: func(){ var n = 0; n = me.bearing.getValue(); if(n == nil or n == 0) { # AI/MP has no radar properties n = me.get_bearing_from_Coord(geo.aircraft_position()); } return n; }, get_bearing_from_Coord: func(MyAircraftCoord){ me.get_Coord(); var myBearing = 0; if(me.coord.is_defined()) { myBearing = MyAircraftCoord.course_to(me.coord); } return myBearing; }, get_reciprocal_bearing: func(){ return geo.normdeg(me.get_bearing() + 180); }, get_deviation: func(true_heading_ref, coord){ me.deviation = - deviation_normdeg(true_heading_ref, me.get_bearing_from_Coord(coord)); return me.deviation; }, get_altitude: func(){ #Return Alt in feet return me.alt.getValue(); }, get_Elevation_from_Coord: func(MyAircraftCoord) { me.get_Coord(); var value = (me.coord.alt() - MyAircraftCoord.alt()) / me.coord.direct_distance_to(MyAircraftCoord); if (math.abs(value) > 1) { # warning this else will fail if logged in as observer and see aircraft on other side of globe return 0; } var myPitch = math.asin(value) * R2D; return myPitch; }, get_total_elevation_from_Coord: func(own_pitch, MyAircraftCoord){ var myTotalElevation = - deviation_normdeg(own_pitch, me.get_Elevation_from_Coord(MyAircraftCoord)); return myTotalElevation; }, get_total_elevation: func(own_pitch) { me.deviation = - deviation_normdeg(own_pitch, me.getElevation()); return me.deviation; }, get_range: func() { var r = 0; if(me.range == nil or me.range.getValue() == nil or me.range.getValue() == 0) { # AI/MP has no radar properties me.get_Coord(); r = me.coord.direct_distance_to(geo.aircraft_position()) * M2NM; } else { r = me.range.getValue(); } return r; }, get_range_from_Coord: func(MyAircraftCoord) { var myCoord = me.get_Coord(); var myDistance = 0; if(myCoord.is_defined()) { myDistance = MyAircraftCoord.direct_distance_to(myCoord) * M2NM; } return myDistance; }, get_type: func () { return me.class; }, get_cartesian: func() { return me.cartesian; }, get_polar: func() { return me.polar; }, }; var isNotBehindTerrain = func( mp ) { ########### var pos = mp.getNode("position"); var alt = pos.getNode("altitude-ft").getValue(); var lat = pos.getNode("latitude-deg").getValue(); var lon = pos.getNode("longitude-deg").getValue(); if(alt == nil or lat == nil or lon == nil) { return isVisible = 0; } var aircraftPos = geo.Coord.new().set_latlon(lat, lon, alt*0.3048); ################# var isVisible = 0; var MyCoord = geo.aircraft_position(); # Because there is no terrain on earth that can be between these 2 if(MyCoord.alt() < 8900 and aircraftPos.alt() < 8900) { # Temporary variable # A (our plane) coord in meters var a = MyCoord.x(); var b = MyCoord.y(); var c = MyCoord.z(); # B (target) coord in meters var d = aircraftPos.x(); var e = aircraftPos.y(); var f = aircraftPos.z(); var difa = d - a; var difb = e - b; var difc = f - c; # direct Distance in meters var myDistance = math.sqrt( math.pow((d-a),2) + math.pow((e-b),2) + math.pow((f-c),2)); #calculating distance ourselves to avoid another call to geo.nas (read: speed, probably). var Aprime = geo.Coord.new(); # Here is to limit FPS drop on very long distance var L = 500; if(myDistance > 50000) { L = myDistance / 15; } var step = L; var maxLoops = int(myDistance / L); isVisible = 1; # This loop will make travel a point between us and the target and check if there is terrain for(var i = 1 ; i <= maxLoops ; i += 1) { #calculate intermediate step #basically dividing the line into maxLoops number of steps, and checking at each step #to ascii-art explain it: # |us|----------|step 1|-----------|step 2|--------|step 3|----------|them| #there will be as many steps as there is i #every step will be equidistant #also, if i == 0 then the first step will be our plane var x = ((difa/(maxLoops+1))*i)+a; var y = ((difb/(maxLoops+1))*i)+b; var z = ((difc/(maxLoops+1))*i)+c; #print("i:" ~ i ~ "|x,y,z | " ~ x ~ "," ~ y ~ "," ~ z); Aprime.set_xyz(x,y,z); var AprimeTerrainAlt = geo.elevation(Aprime.lat(), Aprime.lon()); if(AprimeTerrainAlt == nil) { AprimeTerrainAlt = 0; } if(AprimeTerrainAlt > Aprime.alt()) { #print("behind terrain"); return 0; } } } else { isVisible = 1; } return isVisible; }