mirror of
https://github.com/l0k1/oprf_assets.git
synced 2024-11-21 15:08:03 +08:00
339 lines
13 KiB
Plaintext
339 lines
13 KiB
Plaintext
|
var Math = {
|
||
|
#
|
||
|
# Authors: Nikolai V. Chr, Axel Paccalin.
|
||
|
#
|
||
|
# Version 1.93
|
||
|
#
|
||
|
# When doing euler coords. to cartesian: +x = forw, +y = left, +z = up.
|
||
|
# FG struct. coords: +x = back, +y = right, +z = up.
|
||
|
#
|
||
|
# If euler to cartesian (with inverted heading) then:
|
||
|
# cartesian vector will be x: north, y: west, z: skyward
|
||
|
#
|
||
|
# When doing euler angles (from pilots point of view): yaw = yaw left, pitch = rotate up, roll = roll right.
|
||
|
# FG rotations: heading = yaw right, pitch = rotate up, roll = roll right.
|
||
|
#
|
||
|
clamp: func(v, min, max) { v < min ? min : v > max ? max : v },
|
||
|
|
||
|
convertCoords: func (x,y,z) {
|
||
|
return [-x, -y, z];
|
||
|
},
|
||
|
|
||
|
convertAngles: func (heading,pitch,roll) {
|
||
|
return [-heading, pitch, roll];
|
||
|
},
|
||
|
|
||
|
# returns direction in geo coordinate system
|
||
|
vectorToGeoVector: func (a, coord) {
|
||
|
me.handp = me.cartesianToEuler(a);
|
||
|
me.end_dist_m = 100;# not too low for floating point precision. Not too high to get into earth curvature stuff.
|
||
|
me.tgt_coord = geo.Coord.new(coord);
|
||
|
if (me.handp[0] != nil) {
|
||
|
me.tgt_coord.apply_course_distance(me.handp[0],me.end_dist_m);
|
||
|
me.upamount = me.end_dist_m * math.tan(me.handp[1]*D2R);
|
||
|
} elsif (me.handp[1] == 90) {
|
||
|
me.upamount = me.end_dist_m;
|
||
|
} else {
|
||
|
me.upamount = -me.end_dist_m;
|
||
|
}
|
||
|
me.tgt_coord.set_alt(coord.alt()+me.upamount);
|
||
|
|
||
|
return {"x":me.tgt_coord.x()-coord.x(), "y":me.tgt_coord.y()-coord.y(), "z":me.tgt_coord.z()-coord.z()};
|
||
|
},
|
||
|
|
||
|
# When observing another MP aircraft the groundspeed velocity info is in body frame, this method will convert it to cartesian vector.
|
||
|
getCartesianVelocity: func (yaw_deg, pitch_deg, roll_deg, uBody_fps, vBody_fps, wBody_fps) {
|
||
|
me.bodyVelocity = [uBody_fps, -vBody_fps, -wBody_fps];
|
||
|
return me.yawPitchRollVector(yaw_deg, pitch_deg, roll_deg, me.bodyVelocity);
|
||
|
},
|
||
|
|
||
|
# angle between 2 vectors. Returns 0-180 degrees.
|
||
|
angleBetweenVectors: func (a,b) {
|
||
|
a = me.normalize(a);
|
||
|
b = me.normalize(b);
|
||
|
me.value = me.clamp((me.dotProduct(a,b)/me.magnitudeVector(a))/me.magnitudeVector(b),-1,1);#just to be safe in case some floating point error makes it out of bounds
|
||
|
return R2D * math.acos(me.value);
|
||
|
},
|
||
|
|
||
|
# length of vector
|
||
|
magnitudeVector: func (a) {
|
||
|
return math.sqrt(math.pow(a[0],2)+math.pow(a[1],2)+math.pow(a[2],2));
|
||
|
},
|
||
|
|
||
|
# dot product of 2 vectors
|
||
|
dotProduct: func (a,b) {
|
||
|
return a[0]*b[0]+a[1]*b[1]+a[2]*b[2];
|
||
|
},
|
||
|
|
||
|
# rotate a vector. Order: roll, pitch, yaw
|
||
|
rollPitchYawVector: func (roll, pitch, yaw, vector) {
|
||
|
me.rollM = me.rollMatrix(roll);
|
||
|
me.pitchM = me.pitchMatrix(pitch);
|
||
|
me.yawM = me.yawMatrix(yaw);
|
||
|
me.rotation = me.multiplyMatrices(me.rollM, me.multiplyMatrices(me.pitchM, me.yawM));
|
||
|
return me.multiplyMatrixWithVector(me.rotation, vector);
|
||
|
},
|
||
|
|
||
|
# rotate a vector. Order: yaw, pitch, roll (like an aircraft)
|
||
|
yawPitchRollVector: func (yaw, pitch, roll, vector) {
|
||
|
me.rollM = me.rollMatrix(roll);
|
||
|
me.pitchM = me.pitchMatrix(pitch);
|
||
|
me.yawM = me.yawMatrix(yaw);
|
||
|
me.rotation = me.multiplyMatrices(me.yawM, me.multiplyMatrices(me.pitchM, me.rollM));
|
||
|
return me.multiplyMatrixWithVector(me.rotation, vector);
|
||
|
},
|
||
|
|
||
|
# multiply 3x3 matrix with vector
|
||
|
multiplyMatrixWithVector: func (matrix, vector) {
|
||
|
return [matrix[0]*vector[0]+matrix[1]*vector[1]+matrix[2]*vector[2],
|
||
|
matrix[3]*vector[0]+matrix[4]*vector[1]+matrix[5]*vector[2],
|
||
|
matrix[6]*vector[0]+matrix[7]*vector[1]+matrix[8]*vector[2]];
|
||
|
},
|
||
|
|
||
|
# multiply 2 3x3 matrices
|
||
|
multiplyMatrices: func (a,b) {
|
||
|
return [a[0]*b[0]+a[1]*b[3]+a[2]*b[6], a[0]*b[1]+a[1]*b[4]+a[2]*b[7], a[0]*b[2]+a[1]*b[5]+a[2]*b[8],
|
||
|
a[3]*b[0]+a[4]*b[3]+a[5]*b[6], a[3]*b[1]+a[4]*b[4]+a[5]*b[7], a[3]*b[2]+a[4]*b[5]+a[5]*b[8],
|
||
|
a[6]*b[0]+a[7]*b[3]+a[8]*b[6], a[6]*b[1]+a[7]*b[4]+a[8]*b[7], a[6]*b[2]+a[7]*b[5]+a[8]*b[8]];
|
||
|
},
|
||
|
|
||
|
# matrix for rolling
|
||
|
rollMatrix: func (roll) {
|
||
|
roll = roll * D2R;
|
||
|
return [1,0,0,
|
||
|
0,math.cos(roll),-math.sin(roll),
|
||
|
0,math.sin(roll), math.cos(roll)];
|
||
|
},
|
||
|
|
||
|
# matrix for pitching
|
||
|
pitchMatrix: func (pitch) {
|
||
|
pitch = pitch * D2R;
|
||
|
return [math.cos(pitch),0,-math.sin(pitch),
|
||
|
0,1,0,
|
||
|
math.sin(pitch),0,math.cos(pitch)];
|
||
|
},
|
||
|
|
||
|
# matrix for yawing
|
||
|
yawMatrix: func (yaw) {
|
||
|
yaw = yaw * D2R;
|
||
|
return [math.cos(yaw),-math.sin(yaw),0,
|
||
|
math.sin(yaw),math.cos(yaw),0,
|
||
|
0,0,1];
|
||
|
},
|
||
|
|
||
|
# vector to heading/pitch
|
||
|
cartesianToEuler: func (vector) {
|
||
|
me.horz = math.sqrt(vector[0]*vector[0]+vector[1]*vector[1]);
|
||
|
if (me.horz != 0) {
|
||
|
me.pitch = math.atan2(vector[2],me.horz)*R2D;
|
||
|
me.hdg = math.asin(-vector[1]/me.horz)*R2D;
|
||
|
|
||
|
if (vector[0] < 0) {
|
||
|
# south
|
||
|
if (me.hdg >= 0) {
|
||
|
me.hdg = 180-me.hdg;
|
||
|
} else {
|
||
|
me.hdg = -180-me.hdg;
|
||
|
}
|
||
|
}
|
||
|
me.hdg = geo.normdeg(me.hdg);
|
||
|
} else {
|
||
|
me.pitch = vector[2]>=0?90:-90;
|
||
|
me.hdg = nil;
|
||
|
}
|
||
|
return [me.hdg, me.pitch];
|
||
|
},
|
||
|
|
||
|
# gives an vector that points up from fuselage
|
||
|
eulerToCartesian3Z: func (yaw_deg, pitch_deg, roll_deg) {
|
||
|
me.yaw = yaw_deg * D2R;
|
||
|
me.pitch = pitch_deg * D2R;
|
||
|
me.roll = roll_deg * D2R;
|
||
|
me.x = -math.cos(me.yaw)*math.sin(me.pitch)*math.cos(me.roll) + math.sin(me.yaw)*math.sin(me.roll);
|
||
|
me.y = -math.sin(me.yaw)*math.sin(me.pitch)*math.cos(me.roll) - math.cos(me.yaw)*math.sin(me.roll);
|
||
|
me.z = math.cos(me.pitch)*math.cos(me.roll);#roll changed from sin to cos, since the rotation matrix is wrong
|
||
|
return [me.x,me.y,me.z];
|
||
|
},
|
||
|
|
||
|
# gives an vector that points forward from fuselage
|
||
|
eulerToCartesian3X: func (yaw_deg, pitch_deg, roll_deg) {
|
||
|
me.yaw = yaw_deg * D2R;
|
||
|
me.pitch = pitch_deg * D2R;
|
||
|
me.roll = roll_deg * D2R;
|
||
|
me.x = math.cos(me.yaw)*math.cos(me.pitch);
|
||
|
me.y = math.sin(me.yaw)*math.cos(me.pitch);
|
||
|
me.z = math.sin(me.pitch);
|
||
|
return [me.x,me.y,me.z];
|
||
|
},
|
||
|
|
||
|
# gives an vector that points left from fuselage
|
||
|
eulerToCartesian3Y: func (yaw_deg, pitch_deg, roll_deg) {
|
||
|
me.yaw = yaw_deg * D2R;
|
||
|
me.pitch = pitch_deg * D2R;
|
||
|
me.roll = roll_deg * D2R;
|
||
|
me.x = -math.cos(me.yaw)*math.sin(me.pitch)*math.sin(me.roll) - math.sin(me.yaw)*math.cos(me.roll);
|
||
|
me.y = -math.sin(me.yaw)*math.sin(me.pitch)*math.sin(me.roll) + math.cos(me.yaw)*math.cos(me.roll);
|
||
|
me.z = math.cos(me.pitch)*math.sin(me.roll);
|
||
|
return [me.x,me.y,me.z];
|
||
|
},
|
||
|
|
||
|
# same as eulerToCartesian3X, except it needs no roll
|
||
|
eulerToCartesian2: func (yaw_deg, pitch_deg) {
|
||
|
me.yaw = yaw_deg * D2R;
|
||
|
me.pitch = pitch_deg * D2R;
|
||
|
me.x = math.cos(me.pitch) * math.cos(me.yaw);
|
||
|
me.y = math.cos(me.pitch) * math.sin(me.yaw);
|
||
|
me.z = math.sin(me.pitch);
|
||
|
return [me.x,me.y,me.z];
|
||
|
},
|
||
|
|
||
|
#pitch from coord1 to coord2 in degrees (takes curvature of earth into effect.)
|
||
|
getPitch: func (coord1, coord2) {
|
||
|
if (coord1.lat() == coord2.lat() and coord1.lon() == coord2.lon()) {
|
||
|
if (coord2.alt() > coord1.alt()) {
|
||
|
return 90;
|
||
|
} elsif (coord2.alt() < coord1.alt()) {
|
||
|
return -90;
|
||
|
} else {
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
if (coord1.alt() != coord2.alt()) {
|
||
|
me.d12 = coord1.direct_distance_to(coord2);
|
||
|
me.coord3 = geo.Coord.new(coord1);
|
||
|
me.coord3.set_alt(coord1.alt()-me.d12*0.5);# this will increase the area of the triangle so that rounding errors dont get in the way.
|
||
|
me.d13 = coord1.alt()-me.coord3.alt();
|
||
|
if (me.d12 == 0) {
|
||
|
# on top of each other, maybe rounding error..
|
||
|
return 0;
|
||
|
}
|
||
|
me.d32 = me.coord3.direct_distance_to(coord2);
|
||
|
if (math.abs(me.d13)+me.d32 < me.d12) {
|
||
|
# rounding errors somewhere..one triangle side is longer than other 2 sides combined.
|
||
|
return 0;
|
||
|
}
|
||
|
# standard formula for a triangle where all 3 side lengths are known:
|
||
|
me.len = (math.pow(me.d12, 2)+math.pow(me.d13,2)-math.pow(me.d32, 2))/(2 * me.d12 * math.abs(me.d13));
|
||
|
if (me.len < -1 or me.len > 1) {
|
||
|
# something went wrong, maybe rounding error..
|
||
|
return 0;
|
||
|
}
|
||
|
me.angle = R2D * math.acos(me.len);
|
||
|
me.pitch = -1* (90 - me.angle);
|
||
|
#printf("d12 %.4f d32 %.4f d13 %.4f len %.4f pitch %.4f angle %.4f", me.d12, me.d32, me.d13, me.len, me.pitch, me.angle);
|
||
|
return me.pitch;
|
||
|
} else {
|
||
|
# same altitude
|
||
|
me.nc = geo.Coord.new();
|
||
|
me.nc.set_xyz(0,0,0); # center of earth
|
||
|
me.radiusEarth = coord1.direct_distance_to(me.nc);# current distance to earth center
|
||
|
me.d12 = coord1.direct_distance_to(coord2);
|
||
|
# standard formula for a triangle where all 3 side lengths are known:
|
||
|
me.len = (math.pow(me.d12, 2)+math.pow(me.radiusEarth,2)-math.pow(me.radiusEarth, 2))/(2 * me.d12 * me.radiusEarth);
|
||
|
if (me.len < -1 or me.len > 1) {
|
||
|
# something went wrong, maybe rounding error..
|
||
|
return 0;
|
||
|
}
|
||
|
me.angle = R2D * math.acos(me.len);
|
||
|
me.pitch = -1* (90 - me.angle);
|
||
|
return me.pitch;
|
||
|
}
|
||
|
},
|
||
|
|
||
|
# supply a normal to the plane, and a vector. The vector will be projected onto the plane, and that projection is returned as a vector.
|
||
|
projVectorOnPlane: func (planeNormal, vector) {
|
||
|
return me.minus(vector, me.product(me.dotProduct(vector,planeNormal)/math.pow(me.magnitudeVector(planeNormal),2), planeNormal));
|
||
|
},
|
||
|
|
||
|
# unary - vector
|
||
|
opposite: func (v){
|
||
|
# author: Paccalin
|
||
|
return [-v[0], -v[1], -v[2]];
|
||
|
},
|
||
|
|
||
|
# vector a - vector b
|
||
|
minus: func (a, b) {
|
||
|
return [a[0]-b[0], a[1]-b[1], a[2]-b[2]];
|
||
|
},
|
||
|
|
||
|
# vector a + vector b
|
||
|
plus: func (a, b) {
|
||
|
return [a[0]+b[0], a[1]+b[1], a[2]+b[2]];
|
||
|
},
|
||
|
|
||
|
# float * vector
|
||
|
product: func (scalar, vector) {
|
||
|
return [scalar*vector[0], scalar*vector[1], scalar*vector[2]]
|
||
|
},
|
||
|
|
||
|
# print vector to console
|
||
|
format: func (v) {
|
||
|
return sprintf("(%.1f, %.1f, %.1f)",v[0],v[1],v[2]);
|
||
|
},
|
||
|
|
||
|
# make vector length 1.0
|
||
|
normalize: func (v) {
|
||
|
me.mag = me.magnitudeVector(v);
|
||
|
return [v[0]/me.mag, v[1]/me.mag, v[2]/me.mag];
|
||
|
},
|
||
|
|
||
|
crossProduct: func (a,b) {
|
||
|
return [a[1]*b[2]-a[2]*b[1], a[2]*b[0]-a[0]*b[2], a[0]*b[1]-a[1]*b[0]];
|
||
|
},
|
||
|
|
||
|
distance_from_point_to_line: func (coordP, coordL1, coordL2) {
|
||
|
var P = [coordP.x(), coordP.y(), coordP.z()];
|
||
|
var L1 = [coordL1.x(), coordL1.y(), coordL1.z()];
|
||
|
var L2 = [coordL2.x(), coordL2.y(), coordL2.z()];
|
||
|
|
||
|
return me.magnitudeVector(me.crossProduct(me.minus(L2,L1), me.minus(L1,P)))/me.magnitudeVector(me.minus(L2,L1));
|
||
|
},
|
||
|
|
||
|
# Orthogonal projection of a vector `vec` onto another `ref` !!can throw an exception if the referential vector is null!!.
|
||
|
orthogonalProjection: func(vec, ref){
|
||
|
# author: Paccalin
|
||
|
me.op_refMag = me.magnitudeVector(ref);
|
||
|
if(me.op_refMag == 0)
|
||
|
die("Orthogonal projection on a null vector referential");
|
||
|
|
||
|
return me.dotProduct(vec, ref) / me.op_refMag;
|
||
|
},
|
||
|
|
||
|
# Time at which two particles will be at shortest distance !!can throw an exception if the relative speed is null!!
|
||
|
particleShortestDistTime: func (orig1, speed1, orig2, speed2) {
|
||
|
# author: Paccalin
|
||
|
# Compute the origin of the second particle in a referential positionally centered on the first particle.
|
||
|
me.psdt_tgtOrig = me.minus(orig2, orig1);
|
||
|
# Compute the speed of the second particle in a referential inertially based on the first particle.
|
||
|
me.psdt_tgtSpeed = me.minus(speed2, speed1);
|
||
|
|
||
|
# Project the origin of the particle1 referential onto the line supported by the particle2 trajectory in 1 unit of time.
|
||
|
# And divide the result by the magnitude of the speed to have it normalized relative to the time.
|
||
|
return me.orthogonalProjection(me.opposite(me.psdt_tgtOrig), me.psdt_tgtSpeed) / me.magnitudeVector(me.psdt_tgtSpeed);
|
||
|
},
|
||
|
|
||
|
# rotation matrices
|
||
|
#
|
||
|
#
|
||
|
#| 1 0 0 |
|
||
|
#| 0 cos(roll) -sin(roll) |
|
||
|
#| 0 sin(roll) cos(roll) |
|
||
|
#
|
||
|
#| cos(pitch) 0 -sin(pitch) |
|
||
|
#| 0 1 0 |
|
||
|
#| sin(pitch) 0 cos(pitch) |
|
||
|
#
|
||
|
#| cos(yaw) -sin(yaw) 0 |
|
||
|
#| sin(yaw) cos(yaw) 0 |
|
||
|
#| 0 0 1 |
|
||
|
#
|
||
|
# combined matrix from yaw, pitch, roll:
|
||
|
#
|
||
|
#| cos(yaw)cos(pitch) -cos(yaw)sin(pitch)sin(roll)-sin(yaw)cos(roll) -cos(yaw)sin(pitch)cos(roll)+sin(yaw)sin(roll)|
|
||
|
#| sin(yaw)cos(pitch) -sin(yaw)sin(pitch)sin(roll)+cos(yaw)cos(roll) -sin(yaw)sin(pitch)cos(roll)-cos(yaw)sin(roll)|
|
||
|
#| sin(pitch) cos(pitch)sin(roll) cos(pitch)cos(roll)|
|
||
|
#
|
||
|
#
|
||
|
|
||
|
};
|