/** * OpenAL cross platform audio library * Copyright (C) 1999-2007 by authors. * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include #include #include #include #include "alMain.h" #include "AL/al.h" #include "AL/alc.h" #include "alError.h" #include "alBuffer.h" #include "alDatabuffer.h" #include "alThunk.h" static ALenum LoadData(ALbuffer *ALBuf, ALuint freq, ALenum NewFormat, ALsizei size, enum UserFmtChannels chans, enum UserFmtType type, const ALvoid *data); static void ConvertData(ALvoid *dst, enum FmtType dstType, const ALvoid *src, enum UserFmtType srcType, ALsizei len); static void ConvertDataIMA4(ALvoid *dst, enum FmtType dstType, const ALvoid *src, ALint chans, ALsizei len); #define LookupBuffer(m, k) ((ALbuffer*)LookupUIntMapKey(&(m), (k))) /* * Global Variables */ /* IMA ADPCM Stepsize table */ static const long IMAStep_size[89] = { 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 19, 21, 23, 25, 28, 31, 34, 37, 41, 45, 50, 55, 60, 66, 73, 80, 88, 97, 107, 118, 130, 143, 157, 173, 190, 209, 230, 253, 279, 307, 337, 371, 408, 449, 494, 544, 598, 658, 724, 796, 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066, 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358, 5894, 6484, 7132, 7845, 8630, 9493,10442, 11487,12635,13899,15289,16818,18500,20350,22358,24633,27086,29794, 32767 }; /* IMA4 ADPCM Codeword decode table */ static const long IMA4Codeword[16] = { 1, 3, 5, 7, 9, 11, 13, 15, -1,-3,-5,-7,-9,-11,-13,-15, }; /* IMA4 ADPCM Step index adjust decode table */ static const long IMA4Index_adjust[16] = { -1,-1,-1,-1, 2, 4, 6, 8, -1,-1,-1,-1, 2, 4, 6, 8 }; /* A quick'n'dirty lookup table to decode a muLaw-encoded byte sample into a * signed 16-bit sample */ static const ALshort muLawDecompressionTable[256] = { -32124,-31100,-30076,-29052,-28028,-27004,-25980,-24956, -23932,-22908,-21884,-20860,-19836,-18812,-17788,-16764, -15996,-15484,-14972,-14460,-13948,-13436,-12924,-12412, -11900,-11388,-10876,-10364, -9852, -9340, -8828, -8316, -7932, -7676, -7420, -7164, -6908, -6652, -6396, -6140, -5884, -5628, -5372, -5116, -4860, -4604, -4348, -4092, -3900, -3772, -3644, -3516, -3388, -3260, -3132, -3004, -2876, -2748, -2620, -2492, -2364, -2236, -2108, -1980, -1884, -1820, -1756, -1692, -1628, -1564, -1500, -1436, -1372, -1308, -1244, -1180, -1116, -1052, -988, -924, -876, -844, -812, -780, -748, -716, -684, -652, -620, -588, -556, -524, -492, -460, -428, -396, -372, -356, -340, -324, -308, -292, -276, -260, -244, -228, -212, -196, -180, -164, -148, -132, -120, -112, -104, -96, -88, -80, -72, -64, -56, -48, -40, -32, -24, -16, -8, 0, 32124, 31100, 30076, 29052, 28028, 27004, 25980, 24956, 23932, 22908, 21884, 20860, 19836, 18812, 17788, 16764, 15996, 15484, 14972, 14460, 13948, 13436, 12924, 12412, 11900, 11388, 10876, 10364, 9852, 9340, 8828, 8316, 7932, 7676, 7420, 7164, 6908, 6652, 6396, 6140, 5884, 5628, 5372, 5116, 4860, 4604, 4348, 4092, 3900, 3772, 3644, 3516, 3388, 3260, 3132, 3004, 2876, 2748, 2620, 2492, 2364, 2236, 2108, 1980, 1884, 1820, 1756, 1692, 1628, 1564, 1500, 1436, 1372, 1308, 1244, 1180, 1116, 1052, 988, 924, 876, 844, 812, 780, 748, 716, 684, 652, 620, 588, 556, 524, 492, 460, 428, 396, 372, 356, 340, 324, 308, 292, 276, 260, 244, 228, 212, 196, 180, 164, 148, 132, 120, 112, 104, 96, 88, 80, 72, 64, 56, 48, 40, 32, 24, 16, 8, 0 }; /* Values used when encoding a muLaw sample */ static const int muLawBias = 0x84; static const int muLawClip = 32635; static const char muLawCompressTable[256] = { 0,0,1,1,2,2,2,2,3,3,3,3,3,3,3,3, 4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4, 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6, 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6, 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6, 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7 }; /* * alGenBuffers(ALsizei n, ALuint *buffers) * * Generates n AL Buffers, and stores the Buffers Names in the array pointed * to by buffers */ AL_API ALvoid AL_APIENTRY alGenBuffers(ALsizei n, ALuint *buffers) { ALCcontext *Context; ALsizei i=0; Context = GetContextSuspended(); if(!Context) return; /* Check that we are actually generating some Buffers */ if(n < 0 || IsBadWritePtr((void*)buffers, n * sizeof(ALuint))) alSetError(Context, AL_INVALID_VALUE); else { ALCdevice *device = Context->Device; ALenum err; // Create all the new Buffers while(i < n) { ALbuffer *buffer = calloc(1, sizeof(ALbuffer)); if(!buffer) { alSetError(Context, AL_OUT_OF_MEMORY); alDeleteBuffers(i, buffers); break; } buffer->buffer = (ALuint)ALTHUNK_ADDENTRY(buffer); err = InsertUIntMapEntry(&device->BufferMap, buffer->buffer, buffer); if(err != AL_NO_ERROR) { ALTHUNK_REMOVEENTRY(buffer->buffer); memset(buffer, 0, sizeof(ALbuffer)); free(buffer); alSetError(Context, err); alDeleteBuffers(i, buffers); break; } buffers[i++] = buffer->buffer; } } ProcessContext(Context); } /* * alDeleteBuffers(ALsizei n, ALuint *buffers) * * Deletes the n AL Buffers pointed to by buffers */ AL_API ALvoid AL_APIENTRY alDeleteBuffers(ALsizei n, const ALuint *buffers) { ALCcontext *Context; ALCdevice *device; ALboolean Failed; ALbuffer *ALBuf; ALsizei i; Context = GetContextSuspended(); if(!Context) return; Failed = AL_TRUE; device = Context->Device; /* Check we are actually Deleting some Buffers */ if(n < 0) alSetError(Context, AL_INVALID_VALUE); else { Failed = AL_FALSE; /* Check that all the buffers are valid and can actually be deleted */ for(i = 0;i < n;i++) { if(!buffers[i]) continue; /* Check for valid Buffer ID */ if((ALBuf=LookupBuffer(device->BufferMap, buffers[i])) == NULL) { alSetError(Context, AL_INVALID_NAME); Failed = AL_TRUE; break; } else if(ALBuf->refcount != 0) { /* Buffer still in use, cannot be deleted */ alSetError(Context, AL_INVALID_OPERATION); Failed = AL_TRUE; break; } } } /* If all the Buffers were valid (and have Reference Counts of 0), then we * can delete them */ if(!Failed) { for(i = 0;i < n;i++) { if((ALBuf=LookupBuffer(device->BufferMap, buffers[i])) == NULL) continue; /* Release the memory used to store audio data */ free(ALBuf->data); /* Release buffer structure */ RemoveUIntMapKey(&device->BufferMap, ALBuf->buffer); ALTHUNK_REMOVEENTRY(ALBuf->buffer); memset(ALBuf, 0, sizeof(ALbuffer)); free(ALBuf); } } ProcessContext(Context); } /* * alIsBuffer(ALuint buffer) * * Checks if buffer is a valid Buffer Name */ AL_API ALboolean AL_APIENTRY alIsBuffer(ALuint buffer) { ALCcontext *Context; ALboolean result; Context = GetContextSuspended(); if(!Context) return AL_FALSE; result = ((!buffer || LookupBuffer(Context->Device->BufferMap, buffer)) ? AL_TRUE : AL_FALSE); ProcessContext(Context); return result; } /* * alBufferData(ALuint buffer, ALenum format, const ALvoid *data, * ALsizei size, ALsizei freq) * * Fill buffer with audio data */ AL_API ALvoid AL_APIENTRY alBufferData(ALuint buffer,ALenum format,const ALvoid *data,ALsizei size,ALsizei freq) { enum UserFmtChannels SrcChannels; enum UserFmtType SrcType; ALCcontext *Context; ALCdevice *device; ALbuffer *ALBuf; ALenum err; Context = GetContextSuspended(); if(!Context) return; if(Context->SampleSource) { ALintptrEXT offset; if(Context->SampleSource->state == MAPPED) { alSetError(Context, AL_INVALID_OPERATION); ProcessContext(Context); return; } offset = (const ALubyte*)data - (ALubyte*)NULL; data = Context->SampleSource->data + offset; } device = Context->Device; if((ALBuf=LookupBuffer(device->BufferMap, buffer)) == NULL) alSetError(Context, AL_INVALID_NAME); else if(ALBuf->refcount != 0) alSetError(Context, AL_INVALID_VALUE); else if(size < 0 || freq < 0) alSetError(Context, AL_INVALID_VALUE); else if(DecomposeUserFormat(format, &SrcChannels, &SrcType) == AL_FALSE) alSetError(Context, AL_INVALID_ENUM); else switch(SrcType) { case UserFmtByte: case UserFmtUByte: case UserFmtShort: case UserFmtUShort: case UserFmtInt: case UserFmtUInt: case UserFmtFloat: err = LoadData(ALBuf, freq, format, size, SrcChannels, SrcType, data); if(err != AL_NO_ERROR) alSetError(Context, err); break; case UserFmtDouble: { ALenum NewFormat = AL_FORMAT_MONO_FLOAT32; switch(SrcChannels) { case UserFmtMono: NewFormat = AL_FORMAT_MONO_FLOAT32; break; case UserFmtStereo: NewFormat = AL_FORMAT_STEREO_FLOAT32; break; case UserFmtRear: NewFormat = AL_FORMAT_REAR32; break; case UserFmtQuad: NewFormat = AL_FORMAT_QUAD32; break; case UserFmtX51: NewFormat = AL_FORMAT_51CHN32; break; case UserFmtX61: NewFormat = AL_FORMAT_61CHN32; break; case UserFmtX71: NewFormat = AL_FORMAT_71CHN32; break; } err = LoadData(ALBuf, freq, NewFormat, size, SrcChannels, SrcType, data); if(err != AL_NO_ERROR) alSetError(Context, err); } break; case UserFmtMulaw: case UserFmtIMA4: { ALenum NewFormat = AL_FORMAT_MONO16; switch(SrcChannels) { case UserFmtMono: NewFormat = AL_FORMAT_MONO16; break; case UserFmtStereo: NewFormat = AL_FORMAT_STEREO16; break; case UserFmtRear: NewFormat = AL_FORMAT_REAR16; break; case UserFmtQuad: NewFormat = AL_FORMAT_QUAD16; break; case UserFmtX51: NewFormat = AL_FORMAT_51CHN16; break; case UserFmtX61: NewFormat = AL_FORMAT_61CHN16; break; case UserFmtX71: NewFormat = AL_FORMAT_71CHN16; break; } err = LoadData(ALBuf, freq, NewFormat, size, SrcChannels, SrcType, data); if(err != AL_NO_ERROR) alSetError(Context, err); } break; } ProcessContext(Context); } /* * alBufferSubDataSOFT(ALuint buffer, ALenum format, const ALvoid *data, * ALsizei offset, ALsizei length) * * Update buffer's audio data */ AL_API ALvoid AL_APIENTRY alBufferSubDataSOFT(ALuint buffer,ALenum format,const ALvoid *data,ALsizei offset,ALsizei length) { enum UserFmtChannels SrcChannels; enum UserFmtType SrcType; ALCcontext *Context; ALCdevice *device; ALbuffer *ALBuf; Context = GetContextSuspended(); if(!Context) return; if(Context->SampleSource) { ALintptrEXT offset; if(Context->SampleSource->state == MAPPED) { alSetError(Context, AL_INVALID_OPERATION); ProcessContext(Context); return; } offset = (const ALubyte*)data - (ALubyte*)NULL; data = Context->SampleSource->data + offset; } device = Context->Device; if((ALBuf=LookupBuffer(device->BufferMap, buffer)) == NULL) alSetError(Context, AL_INVALID_NAME); else if(length < 0 || offset < 0 || (length > 0 && data == NULL)) alSetError(Context, AL_INVALID_VALUE); else if(DecomposeUserFormat(format, &SrcChannels, &SrcType) == AL_FALSE || SrcChannels != ALBuf->OriginalChannels || SrcType != ALBuf->OriginalType) alSetError(Context, AL_INVALID_ENUM); else if(offset > ALBuf->OriginalSize || length > ALBuf->OriginalSize-offset || (offset%ALBuf->OriginalAlign) != 0 || (length%ALBuf->OriginalAlign) != 0) alSetError(Context, AL_INVALID_VALUE); else { if(SrcType == UserFmtIMA4) { ALuint Channels = ChannelsFromFmt(ALBuf->FmtChannels); ALuint Bytes = BytesFromFmt(ALBuf->FmtType); /* offset -> byte offset, length -> block count */ offset /= 36; offset *= 65; offset *= Bytes; length /= ALBuf->OriginalAlign; ConvertDataIMA4(&((ALubyte*)ALBuf->data)[offset], ALBuf->FmtType, data, Channels, length); } else { ALuint OldBytes = BytesFromUserFmt(SrcType); ALuint Bytes = BytesFromFmt(ALBuf->FmtType); offset /= OldBytes; offset *= Bytes; length /= OldBytes; ConvertData(&((ALubyte*)ALBuf->data)[offset], ALBuf->FmtType, data, SrcType, length); } } ProcessContext(Context); } AL_API void AL_APIENTRY alBufferf(ALuint buffer, ALenum eParam, ALfloat flValue) { ALCcontext *pContext; ALCdevice *device; (void)flValue; pContext = GetContextSuspended(); if(!pContext) return; device = pContext->Device; if(LookupBuffer(device->BufferMap, buffer) == NULL) alSetError(pContext, AL_INVALID_NAME); else { switch(eParam) { default: alSetError(pContext, AL_INVALID_ENUM); break; } } ProcessContext(pContext); } AL_API void AL_APIENTRY alBuffer3f(ALuint buffer, ALenum eParam, ALfloat flValue1, ALfloat flValue2, ALfloat flValue3) { ALCcontext *pContext; ALCdevice *device; (void)flValue1; (void)flValue2; (void)flValue3; pContext = GetContextSuspended(); if(!pContext) return; device = pContext->Device; if(LookupBuffer(device->BufferMap, buffer) == NULL) alSetError(pContext, AL_INVALID_NAME); else { switch(eParam) { default: alSetError(pContext, AL_INVALID_ENUM); break; } } ProcessContext(pContext); } AL_API void AL_APIENTRY alBufferfv(ALuint buffer, ALenum eParam, const ALfloat* flValues) { ALCcontext *pContext; ALCdevice *device; pContext = GetContextSuspended(); if(!pContext) return; device = pContext->Device; if(!flValues) alSetError(pContext, AL_INVALID_VALUE); else if(LookupBuffer(device->BufferMap, buffer) == NULL) alSetError(pContext, AL_INVALID_NAME); else { switch(eParam) { default: alSetError(pContext, AL_INVALID_ENUM); break; } } ProcessContext(pContext); } AL_API void AL_APIENTRY alBufferi(ALuint buffer, ALenum eParam, ALint lValue) { ALCcontext *pContext; ALCdevice *device; (void)lValue; pContext = GetContextSuspended(); if(!pContext) return; device = pContext->Device; if(LookupBuffer(device->BufferMap, buffer) == NULL) alSetError(pContext, AL_INVALID_NAME); else { switch(eParam) { default: alSetError(pContext, AL_INVALID_ENUM); break; } } ProcessContext(pContext); } AL_API void AL_APIENTRY alBuffer3i( ALuint buffer, ALenum eParam, ALint lValue1, ALint lValue2, ALint lValue3) { ALCcontext *pContext; ALCdevice *device; (void)lValue1; (void)lValue2; (void)lValue3; pContext = GetContextSuspended(); if(!pContext) return; device = pContext->Device; if(LookupBuffer(device->BufferMap, buffer) == NULL) alSetError(pContext, AL_INVALID_NAME); else { switch(eParam) { default: alSetError(pContext, AL_INVALID_ENUM); break; } } ProcessContext(pContext); } AL_API void AL_APIENTRY alBufferiv(ALuint buffer, ALenum eParam, const ALint* plValues) { ALCcontext *pContext; ALCdevice *device; ALbuffer *ALBuf; pContext = GetContextSuspended(); if(!pContext) return; device = pContext->Device; if(!plValues) alSetError(pContext, AL_INVALID_VALUE); else if((ALBuf=LookupBuffer(device->BufferMap, buffer)) == NULL) alSetError(pContext, AL_INVALID_NAME); else { switch(eParam) { case AL_LOOP_POINTS_SOFT: if(ALBuf->refcount > 0) alSetError(pContext, AL_INVALID_OPERATION); else if(plValues[0] < 0 || plValues[1] < 0 || plValues[0] >= plValues[1] || ALBuf->size == 0) alSetError(pContext, AL_INVALID_VALUE); else { ALint maxlen = ALBuf->size / FrameSizeFromFmt(ALBuf->FmtChannels, ALBuf->FmtType); if(plValues[0] > maxlen || plValues[1] > maxlen) alSetError(pContext, AL_INVALID_VALUE); else { ALBuf->LoopStart = plValues[0]; ALBuf->LoopEnd = plValues[1]; } } break; default: alSetError(pContext, AL_INVALID_ENUM); break; } } ProcessContext(pContext); } AL_API ALvoid AL_APIENTRY alGetBufferf(ALuint buffer, ALenum eParam, ALfloat *pflValue) { ALCcontext *pContext; ALCdevice *device; pContext = GetContextSuspended(); if(!pContext) return; device = pContext->Device; if(!pflValue) alSetError(pContext, AL_INVALID_VALUE); else if(LookupBuffer(device->BufferMap, buffer) == NULL) alSetError(pContext, AL_INVALID_NAME); else { switch(eParam) { default: alSetError(pContext, AL_INVALID_ENUM); break; } } ProcessContext(pContext); } AL_API void AL_APIENTRY alGetBuffer3f(ALuint buffer, ALenum eParam, ALfloat* pflValue1, ALfloat* pflValue2, ALfloat* pflValue3) { ALCcontext *pContext; ALCdevice *device; pContext = GetContextSuspended(); if(!pContext) return; device = pContext->Device; if(!pflValue1 || !pflValue2 || !pflValue3) alSetError(pContext, AL_INVALID_VALUE); else if(LookupBuffer(device->BufferMap, buffer) == NULL) alSetError(pContext, AL_INVALID_NAME); else { switch(eParam) { default: alSetError(pContext, AL_INVALID_ENUM); break; } } ProcessContext(pContext); } AL_API void AL_APIENTRY alGetBufferfv(ALuint buffer, ALenum eParam, ALfloat* pflValues) { ALCcontext *pContext; ALCdevice *device; pContext = GetContextSuspended(); if(!pContext) return; device = pContext->Device; if(!pflValues) alSetError(pContext, AL_INVALID_VALUE); else if(LookupBuffer(device->BufferMap, buffer) == NULL) alSetError(pContext, AL_INVALID_NAME); else { switch(eParam) { default: alSetError(pContext, AL_INVALID_ENUM); break; } } ProcessContext(pContext); } AL_API ALvoid AL_APIENTRY alGetBufferi(ALuint buffer, ALenum eParam, ALint *plValue) { ALCcontext *pContext; ALbuffer *pBuffer; ALCdevice *device; pContext = GetContextSuspended(); if(!pContext) return; device = pContext->Device; if(!plValue) alSetError(pContext, AL_INVALID_VALUE); else if((pBuffer=LookupBuffer(device->BufferMap, buffer)) == NULL) alSetError(pContext, AL_INVALID_NAME); else { switch(eParam) { case AL_FREQUENCY: *plValue = pBuffer->Frequency; break; case AL_BITS: *plValue = BytesFromFmt(pBuffer->FmtType) * 8; break; case AL_CHANNELS: *plValue = ChannelsFromFmt(pBuffer->FmtChannels); break; case AL_SIZE: *plValue = pBuffer->size; break; default: alSetError(pContext, AL_INVALID_ENUM); break; } } ProcessContext(pContext); } AL_API void AL_APIENTRY alGetBuffer3i(ALuint buffer, ALenum eParam, ALint* plValue1, ALint* plValue2, ALint* plValue3) { ALCcontext *pContext; ALCdevice *device; pContext = GetContextSuspended(); if(!pContext) return; device = pContext->Device; if(!plValue1 || !plValue2 || !plValue3) alSetError(pContext, AL_INVALID_VALUE); else if(LookupBuffer(device->BufferMap, buffer) == NULL) alSetError(pContext, AL_INVALID_NAME); else { switch(eParam) { default: alSetError(pContext, AL_INVALID_ENUM); break; } } ProcessContext(pContext); } AL_API void AL_APIENTRY alGetBufferiv(ALuint buffer, ALenum eParam, ALint* plValues) { ALCcontext *pContext; ALCdevice *device; ALbuffer *ALBuf; pContext = GetContextSuspended(); if(!pContext) return; device = pContext->Device; if(!plValues) alSetError(pContext, AL_INVALID_VALUE); else if((ALBuf=LookupBuffer(device->BufferMap, buffer)) == NULL) alSetError(pContext, AL_INVALID_NAME); else { switch(eParam) { case AL_FREQUENCY: case AL_BITS: case AL_CHANNELS: case AL_SIZE: alGetBufferi(buffer, eParam, plValues); break; case AL_LOOP_POINTS_SOFT: plValues[0] = ALBuf->LoopStart; plValues[1] = ALBuf->LoopEnd; break; default: alSetError(pContext, AL_INVALID_ENUM); break; } } ProcessContext(pContext); } typedef ALubyte ALmulaw; static __inline ALshort DecodeMuLaw(ALmulaw val) { return muLawDecompressionTable[val]; } static ALmulaw EncodeMuLaw(ALshort val) { ALint mant, exp, sign; sign = (val>>8) & 0x80; if(sign) { /* -32768 doesn't properly negate on a short; it results in itself. * So clamp to -32767 */ val = max(val, -32767); val = -val; } val = min(val, muLawClip); val += muLawBias; exp = muLawCompressTable[(val>>7) & 0xff]; mant = (val >> (exp+3)) & 0x0f; return ~(sign | (exp<<4) | mant); } static void DecodeIMA4Block(ALshort *dst, const ALubyte *src, ALint numchans) { ALint sample[MAXCHANNELS], index[MAXCHANNELS]; ALuint code[MAXCHANNELS]; ALsizei j,k,c; for(c = 0;c < numchans;c++) { sample[c] = *(src++); sample[c] |= *(src++) << 8; sample[c] = (sample[c]^0x8000) - 32768; index[c] = *(src++); index[c] |= *(src++) << 8; index[c] = (index[c]^0x8000) - 32768; index[c] = max(0, index[c]); index[c] = min(index[c], 88); dst[c] = sample[c]; } j = 1; while(j < 65) { for(c = 0;c < numchans;c++) { code[c] = *(src++); code[c] |= *(src++) << 8; code[c] |= *(src++) << 16; code[c] |= *(src++) << 24; } for(k = 0;k < 8;k++,j++) { for(c = 0;c < numchans;c++) { int nibble = code[c]&0xf; code[c] >>= 4; sample[c] += IMA4Codeword[nibble] * IMAStep_size[index[c]] / 8; sample[c] = max(-32768, sample[c]); sample[c] = min(sample[c], 32767); index[c] += IMA4Index_adjust[nibble]; index[c] = max(0, index[c]); index[c] = min(index[c], 88); dst[j*numchans + c] = sample[c]; } } } } static void EncodeIMA4Block(ALubyte *dst, const ALshort *src, ALint *sample, ALint *index, ALint numchans) { ALsizei j,k,c; for(c = 0;c < numchans;c++) { int diff = src[c] - sample[c]; int step = IMAStep_size[index[c]]; int nibble; nibble = 0; if(diff < 0) { nibble = 0x8; diff = -diff; } diff = min(step*2, diff); nibble |= (diff*8/step - 1) / 2; sample[c] += IMA4Codeword[nibble] * step / 8; sample[c] = max(-32768, sample[c]); sample[c] = min(sample[c], 32767); index[c] += IMA4Index_adjust[nibble]; index[c] = max(0, index[c]); index[c] = min(index[c], 88); *(dst++) = sample[c] & 0xff; *(dst++) = (sample[c]>>8) & 0xff; *(dst++) = index[c] & 0xff; *(dst++) = (index[c]>>8) & 0xff; } j = 1; while(j < 65) { for(c = 0;c < numchans;c++) { for(k = 0;k < 8;k++) { int diff = src[(j+k)*numchans + c] - sample[c]; int step = IMAStep_size[index[c]]; int nibble; nibble = 0; if(diff < 0) { nibble = 0x8; diff = -diff; } diff = min(step*2, diff); nibble |= (diff*8/step - 1) / 2; sample[c] += IMA4Codeword[nibble] * step / 8; sample[c] = max(-32768, sample[c]); sample[c] = min(sample[c], 32767); index[c] += IMA4Index_adjust[nibble]; index[c] = max(0, index[c]); index[c] = min(index[c], 88); if(!(k&1)) *dst = nibble; else *(dst++) |= nibble<<4; } } j += 8; } } static __inline ALbyte Conv_ALbyte_ALbyte(ALbyte val) { return val; } static __inline ALbyte Conv_ALbyte_ALubyte(ALubyte val) { return val-128; } static __inline ALbyte Conv_ALbyte_ALshort(ALshort val) { return val>>8; } static __inline ALbyte Conv_ALbyte_ALushort(ALushort val) { return (val>>8)-128; } static __inline ALbyte Conv_ALbyte_ALint(ALint val) { return val>>24; } static __inline ALbyte Conv_ALbyte_ALuint(ALuint val) { return (val>>24)-128; } static __inline ALbyte Conv_ALbyte_ALfloat(ALfloat val) { if(val > 1.0f) return 127; if(val < -1.0f) return -128; return (ALint)(val * 127.0f); } static __inline ALbyte Conv_ALbyte_ALdouble(ALdouble val) { if(val > 1.0) return 127; if(val < -1.0) return -128; return (ALint)(val * 127.0); } static __inline ALbyte Conv_ALbyte_ALmulaw(ALmulaw val) { return Conv_ALbyte_ALshort(DecodeMuLaw(val)); } static __inline ALubyte Conv_ALubyte_ALbyte(ALbyte val) { return val+128; } static __inline ALubyte Conv_ALubyte_ALubyte(ALubyte val) { return val; } static __inline ALubyte Conv_ALubyte_ALshort(ALshort val) { return (val>>8)+128; } static __inline ALubyte Conv_ALubyte_ALushort(ALushort val) { return val>>8; } static __inline ALubyte Conv_ALubyte_ALint(ALint val) { return (val>>24)+128; } static __inline ALubyte Conv_ALubyte_ALuint(ALuint val) { return val>>24; } static __inline ALubyte Conv_ALubyte_ALfloat(ALfloat val) { if(val > 1.0f) return 255; if(val < -1.0f) return 0; return (ALint)(val * 127.0f) + 128; } static __inline ALubyte Conv_ALubyte_ALdouble(ALdouble val) { if(val > 1.0) return 255; if(val < -1.0) return 0; return (ALint)(val * 127.0) + 128; } static __inline ALubyte Conv_ALubyte_ALmulaw(ALmulaw val) { return Conv_ALubyte_ALshort(DecodeMuLaw(val)); } static __inline ALshort Conv_ALshort_ALbyte(ALbyte val) { return val<<8; } static __inline ALshort Conv_ALshort_ALubyte(ALubyte val) { return (val-128)<<8; } static __inline ALshort Conv_ALshort_ALshort(ALshort val) { return val; } static __inline ALshort Conv_ALshort_ALushort(ALushort val) { return val-32768; } static __inline ALshort Conv_ALshort_ALint(ALint val) { return val>>16; } static __inline ALshort Conv_ALshort_ALuint(ALuint val) { return (val>>16)-32768; } static __inline ALshort Conv_ALshort_ALfloat(ALfloat val) { if(val > 1.0f) return 32767; if(val < -1.0f) return -32768; return (ALint)(val * 32767.0f); } static __inline ALshort Conv_ALshort_ALdouble(ALdouble val) { if(val > 1.0) return 32767; if(val < -1.0) return -32768; return (ALint)(val * 32767.0); } static __inline ALshort Conv_ALshort_ALmulaw(ALmulaw val) { return Conv_ALshort_ALshort(DecodeMuLaw(val)); } static __inline ALushort Conv_ALushort_ALbyte(ALbyte val) { return (val+128)<<8; } static __inline ALushort Conv_ALushort_ALubyte(ALubyte val) { return val<<8; } static __inline ALushort Conv_ALushort_ALshort(ALshort val) { return val+32768; } static __inline ALushort Conv_ALushort_ALushort(ALushort val) { return val; } static __inline ALushort Conv_ALushort_ALint(ALint val) { return (val>>16)+32768; } static __inline ALushort Conv_ALushort_ALuint(ALuint val) { return val>>16; } static __inline ALushort Conv_ALushort_ALfloat(ALfloat val) { if(val > 1.0f) return 65535; if(val < -1.0f) return 0; return (ALint)(val * 32767.0f) + 32768; } static __inline ALushort Conv_ALushort_ALdouble(ALdouble val) { if(val > 1.0) return 65535; if(val < -1.0) return 0; return (ALint)(val * 32767.0) + 32768; } static __inline ALushort Conv_ALushort_ALmulaw(ALmulaw val) { return Conv_ALushort_ALshort(DecodeMuLaw(val)); } static __inline ALint Conv_ALint_ALbyte(ALbyte val) { return val<<24; } static __inline ALint Conv_ALint_ALubyte(ALubyte val) { return (val-128)<<24; } static __inline ALint Conv_ALint_ALshort(ALshort val) { return val<<16; } static __inline ALint Conv_ALint_ALushort(ALushort val) { return (val-32768)<<16; } static __inline ALint Conv_ALint_ALint(ALint val) { return val; } static __inline ALint Conv_ALint_ALuint(ALuint val) { return val-2147483648u; } static __inline ALint Conv_ALint_ALfloat(ALfloat val) { if(val > 1.0f) return 2147483647; if(val < -1.0f) return -2147483647-1; return (ALint)(val * 2147483647.0); } static __inline ALint Conv_ALint_ALdouble(ALdouble val) { if(val > 1.0) return 2147483647; if(val < -1.0) return -2147483647-1; return (ALint)(val * 2147483647.0); } static __inline ALint Conv_ALint_ALmulaw(ALmulaw val) { return Conv_ALint_ALshort(DecodeMuLaw(val)); } static __inline ALuint Conv_ALuint_ALbyte(ALbyte val) { return (val+128)<<24; } static __inline ALuint Conv_ALuint_ALubyte(ALubyte val) { return val<<24; } static __inline ALuint Conv_ALuint_ALshort(ALshort val) { return (val+32768)<<16; } static __inline ALuint Conv_ALuint_ALushort(ALushort val) { return val<<16; } static __inline ALuint Conv_ALuint_ALint(ALint val) { return val+2147483648u; } static __inline ALuint Conv_ALuint_ALuint(ALuint val) { return val; } static __inline ALuint Conv_ALuint_ALfloat(ALfloat val) { if(val > 1.0f) return 4294967295u; if(val < -1.0f) return 0; return (ALint)(val * 2147483647.0) + 2147483648u; } static __inline ALuint Conv_ALuint_ALdouble(ALdouble val) { if(val > 1.0) return 4294967295u; if(val < -1.0) return 0; return (ALint)(val * 2147483647.0) + 2147483648u; } static __inline ALuint Conv_ALuint_ALmulaw(ALmulaw val) { return Conv_ALuint_ALshort(DecodeMuLaw(val)); } static __inline ALfloat Conv_ALfloat_ALbyte(ALbyte val) { return val * (1.0f/127.0f); } static __inline ALfloat Conv_ALfloat_ALubyte(ALubyte val) { return (val-128) * (1.0f/127.0f); } static __inline ALfloat Conv_ALfloat_ALshort(ALshort val) { return val * (1.0f/32767.0f); } static __inline ALfloat Conv_ALfloat_ALushort(ALushort val) { return (val-32768) * (1.0f/32767.0f); } static __inline ALfloat Conv_ALfloat_ALint(ALint val) { return val * (1.0/2147483647.0); } static __inline ALfloat Conv_ALfloat_ALuint(ALuint val) { return (ALint)(val-2147483648u) * (1.0/2147483647.0); } static __inline ALfloat Conv_ALfloat_ALfloat(ALfloat val) { return val; } static __inline ALfloat Conv_ALfloat_ALdouble(ALdouble val) { return val; } static __inline ALfloat Conv_ALfloat_ALmulaw(ALmulaw val) { return Conv_ALfloat_ALshort(DecodeMuLaw(val)); } static __inline ALdouble Conv_ALdouble_ALbyte(ALbyte val) { return val * (1.0/127.0); } static __inline ALdouble Conv_ALdouble_ALubyte(ALubyte val) { return (val-128) * (1.0/127.0); } static __inline ALdouble Conv_ALdouble_ALshort(ALshort val) { return val * (1.0/32767.0); } static __inline ALdouble Conv_ALdouble_ALushort(ALushort val) { return (val-32768) * (1.0/32767.0); } static __inline ALdouble Conv_ALdouble_ALint(ALint val) { return val * (1.0/2147483647.0); } static __inline ALdouble Conv_ALdouble_ALuint(ALuint val) { return (ALint)(val-2147483648u) * (1.0/2147483647.0); } static __inline ALdouble Conv_ALdouble_ALfloat(ALfloat val) { return val; } static __inline ALdouble Conv_ALdouble_ALdouble(ALdouble val) { return val; } static __inline ALdouble Conv_ALdouble_ALmulaw(ALmulaw val) { return Conv_ALdouble_ALshort(DecodeMuLaw(val)); } #define DECL_TEMPLATE(T) \ static __inline ALmulaw Conv_ALmulaw_##T(T val) \ { return EncodeMuLaw(Conv_ALshort_##T(val)); } DECL_TEMPLATE(ALbyte) DECL_TEMPLATE(ALubyte) DECL_TEMPLATE(ALshort) DECL_TEMPLATE(ALushort) DECL_TEMPLATE(ALint) DECL_TEMPLATE(ALuint) DECL_TEMPLATE(ALfloat) DECL_TEMPLATE(ALdouble) static __inline ALmulaw Conv_ALmulaw_ALmulaw(ALmulaw val) { return val; } #undef DECL_TEMPLATE #define DECL_TEMPLATE(T1, T2) \ static void Convert_##T1##_##T2(T1 *dst, const T2 *src, ALuint len) \ { \ ALuint i; \ for(i = 0;i < len;i++) \ *(dst++) = Conv_##T1##_##T2(*(src++)); \ } DECL_TEMPLATE(ALbyte, ALbyte) DECL_TEMPLATE(ALbyte, ALubyte) DECL_TEMPLATE(ALbyte, ALshort) DECL_TEMPLATE(ALbyte, ALushort) DECL_TEMPLATE(ALbyte, ALint) DECL_TEMPLATE(ALbyte, ALuint) DECL_TEMPLATE(ALbyte, ALfloat) DECL_TEMPLATE(ALbyte, ALdouble) DECL_TEMPLATE(ALbyte, ALmulaw) DECL_TEMPLATE(ALubyte, ALbyte) DECL_TEMPLATE(ALubyte, ALubyte) DECL_TEMPLATE(ALubyte, ALshort) DECL_TEMPLATE(ALubyte, ALushort) DECL_TEMPLATE(ALubyte, ALint) DECL_TEMPLATE(ALubyte, ALuint) DECL_TEMPLATE(ALubyte, ALfloat) DECL_TEMPLATE(ALubyte, ALdouble) DECL_TEMPLATE(ALubyte, ALmulaw) DECL_TEMPLATE(ALshort, ALbyte) DECL_TEMPLATE(ALshort, ALubyte) DECL_TEMPLATE(ALshort, ALshort) DECL_TEMPLATE(ALshort, ALushort) DECL_TEMPLATE(ALshort, ALint) DECL_TEMPLATE(ALshort, ALuint) DECL_TEMPLATE(ALshort, ALfloat) DECL_TEMPLATE(ALshort, ALdouble) DECL_TEMPLATE(ALshort, ALmulaw) DECL_TEMPLATE(ALushort, ALbyte) DECL_TEMPLATE(ALushort, ALubyte) DECL_TEMPLATE(ALushort, ALshort) DECL_TEMPLATE(ALushort, ALushort) DECL_TEMPLATE(ALushort, ALint) DECL_TEMPLATE(ALushort, ALuint) DECL_TEMPLATE(ALushort, ALfloat) DECL_TEMPLATE(ALushort, ALdouble) DECL_TEMPLATE(ALushort, ALmulaw) DECL_TEMPLATE(ALint, ALbyte) DECL_TEMPLATE(ALint, ALubyte) DECL_TEMPLATE(ALint, ALshort) DECL_TEMPLATE(ALint, ALushort) DECL_TEMPLATE(ALint, ALint) DECL_TEMPLATE(ALint, ALuint) DECL_TEMPLATE(ALint, ALfloat) DECL_TEMPLATE(ALint, ALdouble) DECL_TEMPLATE(ALint, ALmulaw) DECL_TEMPLATE(ALuint, ALbyte) DECL_TEMPLATE(ALuint, ALubyte) DECL_TEMPLATE(ALuint, ALshort) DECL_TEMPLATE(ALuint, ALushort) DECL_TEMPLATE(ALuint, ALint) DECL_TEMPLATE(ALuint, ALuint) DECL_TEMPLATE(ALuint, ALfloat) DECL_TEMPLATE(ALuint, ALdouble) DECL_TEMPLATE(ALuint, ALmulaw) DECL_TEMPLATE(ALfloat, ALbyte) DECL_TEMPLATE(ALfloat, ALubyte) DECL_TEMPLATE(ALfloat, ALshort) DECL_TEMPLATE(ALfloat, ALushort) DECL_TEMPLATE(ALfloat, ALint) DECL_TEMPLATE(ALfloat, ALuint) DECL_TEMPLATE(ALfloat, ALfloat) DECL_TEMPLATE(ALfloat, ALdouble) DECL_TEMPLATE(ALfloat, ALmulaw) DECL_TEMPLATE(ALdouble, ALbyte) DECL_TEMPLATE(ALdouble, ALubyte) DECL_TEMPLATE(ALdouble, ALshort) DECL_TEMPLATE(ALdouble, ALushort) DECL_TEMPLATE(ALdouble, ALint) DECL_TEMPLATE(ALdouble, ALuint) DECL_TEMPLATE(ALdouble, ALfloat) DECL_TEMPLATE(ALdouble, ALdouble) DECL_TEMPLATE(ALdouble, ALmulaw) DECL_TEMPLATE(ALmulaw, ALbyte) DECL_TEMPLATE(ALmulaw, ALubyte) DECL_TEMPLATE(ALmulaw, ALshort) DECL_TEMPLATE(ALmulaw, ALushort) DECL_TEMPLATE(ALmulaw, ALint) DECL_TEMPLATE(ALmulaw, ALuint) DECL_TEMPLATE(ALmulaw, ALfloat) DECL_TEMPLATE(ALmulaw, ALdouble) DECL_TEMPLATE(ALmulaw, ALmulaw) #undef DECL_TEMPLATE #define DECL_TEMPLATE(T) \ static void Convert_##T##_IMA4(T *dst, const ALubyte *src, ALuint numchans, \ ALuint numblocks) \ { \ ALuint i, j; \ ALshort tmp[65*MAXCHANNELS]; /* Max samples an IMA4 frame can be */ \ for(i = 0;i < numblocks;i++) \ { \ DecodeIMA4Block(tmp, src, numchans); \ src += 36*numchans; \ for(j = 0;j < 65*numchans;j++) \ *(dst++) = Conv_##T##_ALshort(tmp[j]); \ } \ } DECL_TEMPLATE(ALbyte) DECL_TEMPLATE(ALubyte) DECL_TEMPLATE(ALshort) DECL_TEMPLATE(ALushort) DECL_TEMPLATE(ALint) DECL_TEMPLATE(ALuint) DECL_TEMPLATE(ALfloat) DECL_TEMPLATE(ALdouble) DECL_TEMPLATE(ALmulaw) #undef DECL_TEMPLATE #define DECL_TEMPLATE(T) \ static void Convert_IMA4_##T(ALubyte *dst, const T *src, ALuint numchans, \ ALuint numblocks) \ { \ ALuint i, j; \ ALshort tmp[65*MAXCHANNELS]; /* Max samples an IMA4 frame can be */ \ ALint sample[MAXCHANNELS] = {0,0,0,0,0,0,0,0}; \ ALint index[MAXCHANNELS] = {0,0,0,0,0,0,0,0}; \ for(i = 0;i < numblocks;i++) \ { \ for(j = 0;j < 65*numchans;j++) \ tmp[j] = Conv_ALshort_##T(*(src++)); \ EncodeIMA4Block(dst, tmp, sample, index, numchans); \ dst += 36*numchans; \ } \ } DECL_TEMPLATE(ALbyte) DECL_TEMPLATE(ALubyte) DECL_TEMPLATE(ALshort) DECL_TEMPLATE(ALushort) DECL_TEMPLATE(ALint) DECL_TEMPLATE(ALuint) DECL_TEMPLATE(ALfloat) DECL_TEMPLATE(ALdouble) DECL_TEMPLATE(ALmulaw) #undef DECL_TEMPLATE static void Convert_IMA4_IMA4(ALubyte *dst, const ALubyte *src, ALuint numchans, ALuint numblocks) { memcpy(dst, src, numblocks*36*numchans); } #define DECL_TEMPLATE(T) \ static void Convert_##T(T *dst, const ALvoid *src, enum UserFmtType srcType, \ ALsizei len) \ { \ switch(srcType) \ { \ case UserFmtByte: \ Convert_##T##_ALbyte(dst, src, len); \ break; \ case UserFmtUByte: \ Convert_##T##_ALubyte(dst, src, len); \ break; \ case UserFmtShort: \ Convert_##T##_ALshort(dst, src, len); \ break; \ case UserFmtUShort: \ Convert_##T##_ALushort(dst, src, len); \ break; \ case UserFmtInt: \ Convert_##T##_ALint(dst, src, len); \ break; \ case UserFmtUInt: \ Convert_##T##_ALuint(dst, src, len); \ break; \ case UserFmtFloat: \ Convert_##T##_ALfloat(dst, src, len); \ break; \ case UserFmtDouble: \ Convert_##T##_ALdouble(dst, src, len); \ break; \ case UserFmtMulaw: \ Convert_##T##_ALmulaw(dst, src, len); \ break; \ case UserFmtIMA4: \ break; /* not handled here */ \ } \ } DECL_TEMPLATE(ALbyte) DECL_TEMPLATE(ALubyte) DECL_TEMPLATE(ALshort) DECL_TEMPLATE(ALushort) DECL_TEMPLATE(ALint) DECL_TEMPLATE(ALuint) DECL_TEMPLATE(ALfloat) DECL_TEMPLATE(ALdouble) DECL_TEMPLATE(ALmulaw) #undef DECL_TEMPLATE static void Convert_IMA4(ALubyte *dst, const ALvoid *src, enum UserFmtType srcType, ALint chans, ALsizei len) { switch(srcType) { case UserFmtByte: Convert_IMA4_ALbyte(dst, src, chans, len); break; case UserFmtUByte: Convert_IMA4_ALubyte(dst, src, chans, len); break; case UserFmtShort: Convert_IMA4_ALshort(dst, src, chans, len); break; case UserFmtUShort: Convert_IMA4_ALushort(dst, src, chans, len); break; case UserFmtInt: Convert_IMA4_ALint(dst, src, chans, len); break; case UserFmtUInt: Convert_IMA4_ALuint(dst, src, chans, len); break; case UserFmtFloat: Convert_IMA4_ALfloat(dst, src, chans, len); break; case UserFmtDouble: Convert_IMA4_ALdouble(dst, src, chans, len); break; case UserFmtMulaw: Convert_IMA4_ALmulaw(dst, src, chans, len); break; case UserFmtIMA4: Convert_IMA4_IMA4(dst, src, chans, len); break; } } static void ConvertData(ALvoid *dst, enum FmtType dstType, const ALvoid *src, enum UserFmtType srcType, ALsizei len) { switch(dstType) { (void)Convert_ALbyte; case FmtUByte: Convert_ALubyte(dst, src, srcType, len); break; case FmtShort: Convert_ALshort(dst, src, srcType, len); break; (void)Convert_ALushort; (void)Convert_ALint; (void)Convert_ALuint; case FmtFloat: Convert_ALfloat(dst, src, srcType, len); break; (void)Convert_ALdouble; (void)Convert_ALmulaw; (void)Convert_IMA4; } } static void ConvertDataIMA4(ALvoid *dst, enum FmtType dstType, const ALvoid *src, ALint chans, ALsizei len) { switch(dstType) { (void)Convert_ALbyte_IMA4; case FmtUByte: Convert_ALubyte_IMA4(dst, src, chans, len); break; case FmtShort: Convert_ALshort_IMA4(dst, src, chans, len); break; (void)Convert_ALushort_IMA4; (void)Convert_ALint_IMA4; (void)Convert_ALuint_IMA4; case FmtFloat: Convert_ALfloat_IMA4(dst, src, chans, len); break; (void)Convert_ALdouble_IMA4; (void)Convert_ALmulaw_IMA4; } } /* * LoadData * * Loads the specified data into the buffer, using the specified formats. * Currently, the new format must have the same channel configuration as the * original format. */ static ALenum LoadData(ALbuffer *ALBuf, ALuint freq, ALenum NewFormat, ALsizei size, enum UserFmtChannels SrcChannels, enum UserFmtType SrcType, const ALvoid *data) { ALuint NewChannels, NewBytes; enum FmtChannels DstChannels; enum FmtType DstType; ALuint64 newsize; ALvoid *temp; DecomposeFormat(NewFormat, &DstChannels, &DstType); NewChannels = ChannelsFromFmt(DstChannels); NewBytes = BytesFromFmt(DstType); assert(SrcChannels == DstChannels); if(SrcType == UserFmtIMA4) { ALuint OrigChannels = ChannelsFromUserFmt(SrcChannels); /* Here is where things vary: * nVidia and Apple use 64+1 sample frames per block -> block_size=36 bytes per channel * Most PC sound software uses 2040+1 sample frames per block -> block_size=1024 bytes per channel */ if((size%(36*OrigChannels)) != 0) return AL_INVALID_VALUE; newsize = size / 36; newsize *= 65; newsize *= NewBytes; if(newsize > INT_MAX) return AL_OUT_OF_MEMORY; temp = realloc(ALBuf->data, newsize); if(!temp && newsize) return AL_OUT_OF_MEMORY; ALBuf->data = temp; ALBuf->size = newsize; if(data != NULL) ConvertDataIMA4(ALBuf->data, DstType, data, OrigChannels, newsize/(65*NewChannels*NewBytes)); ALBuf->OriginalChannels = SrcChannels; ALBuf->OriginalType = SrcType; ALBuf->OriginalSize = size; ALBuf->OriginalAlign = 36 * OrigChannels; } else { ALuint OrigBytes = BytesFromUserFmt(SrcType); ALuint OrigChannels = ChannelsFromUserFmt(SrcChannels); if((size%(OrigBytes*OrigChannels)) != 0) return AL_INVALID_VALUE; newsize = size / OrigBytes; newsize *= NewBytes; if(newsize > INT_MAX) return AL_OUT_OF_MEMORY; temp = realloc(ALBuf->data, newsize); if(!temp && newsize) return AL_OUT_OF_MEMORY; ALBuf->data = temp; ALBuf->size = newsize; if(data != NULL) ConvertData(ALBuf->data, DstType, data, SrcType, newsize/NewBytes); ALBuf->OriginalChannels = SrcChannels; ALBuf->OriginalType = SrcType; ALBuf->OriginalSize = size; ALBuf->OriginalAlign = OrigBytes * OrigChannels; } ALBuf->Frequency = freq; ALBuf->FmtChannels = DstChannels; ALBuf->FmtType = DstType; ALBuf->LoopStart = 0; ALBuf->LoopEnd = newsize / NewChannels / NewBytes; return AL_NO_ERROR; } ALuint BytesFromUserFmt(enum UserFmtType type) { switch(type) { case UserFmtByte: return sizeof(ALbyte); case UserFmtUByte: return sizeof(ALubyte); case UserFmtShort: return sizeof(ALshort); case UserFmtUShort: return sizeof(ALushort); case UserFmtInt: return sizeof(ALint); case UserFmtUInt: return sizeof(ALuint); case UserFmtFloat: return sizeof(ALfloat); case UserFmtDouble: return sizeof(ALdouble); case UserFmtMulaw: return sizeof(ALubyte); case UserFmtIMA4: break; /* not handled here */ } return 0; } ALuint ChannelsFromUserFmt(enum UserFmtChannels chans) { switch(chans) { case UserFmtMono: return 1; case UserFmtStereo: return 2; case UserFmtRear: return 2; case UserFmtQuad: return 4; case UserFmtX51: return 6; case UserFmtX61: return 7; case UserFmtX71: return 8; } return 0; } ALboolean DecomposeUserFormat(ALenum format, enum UserFmtChannels *chans, enum UserFmtType *type) { switch(format) { case AL_FORMAT_MONO8: *chans = UserFmtMono; *type = UserFmtUByte; return AL_TRUE; case AL_FORMAT_MONO16: *chans = UserFmtMono; *type = UserFmtShort; return AL_TRUE; case AL_FORMAT_MONO_FLOAT32: *chans = UserFmtMono; *type = UserFmtFloat; return AL_TRUE; case AL_FORMAT_MONO_DOUBLE_EXT: *chans = UserFmtMono; *type = UserFmtDouble; return AL_TRUE; case AL_FORMAT_MONO_IMA4: *chans = UserFmtMono; *type = UserFmtIMA4; return AL_TRUE; case AL_FORMAT_STEREO8: *chans = UserFmtStereo; *type = UserFmtUByte; return AL_TRUE; case AL_FORMAT_STEREO16: *chans = UserFmtStereo; *type = UserFmtShort; return AL_TRUE; case AL_FORMAT_STEREO_FLOAT32: *chans = UserFmtStereo; *type = UserFmtFloat; return AL_TRUE; case AL_FORMAT_STEREO_DOUBLE_EXT: *chans = UserFmtStereo; *type = UserFmtDouble; return AL_TRUE; case AL_FORMAT_STEREO_IMA4: *chans = UserFmtStereo; *type = UserFmtIMA4; return AL_TRUE; case AL_FORMAT_QUAD8_LOKI: case AL_FORMAT_QUAD8: *chans = UserFmtQuad; *type = UserFmtUByte; return AL_TRUE; case AL_FORMAT_QUAD16_LOKI: case AL_FORMAT_QUAD16: *chans = UserFmtQuad; *type = UserFmtShort; return AL_TRUE; case AL_FORMAT_QUAD32: *chans = UserFmtQuad; *type = UserFmtFloat; return AL_TRUE; case AL_FORMAT_REAR8: *chans = UserFmtRear; *type = UserFmtUByte; return AL_TRUE; case AL_FORMAT_REAR16: *chans = UserFmtRear; *type = UserFmtShort; return AL_TRUE; case AL_FORMAT_REAR32: *chans = UserFmtRear; *type = UserFmtFloat; return AL_TRUE; case AL_FORMAT_51CHN8: *chans = UserFmtX51; *type = UserFmtUByte; return AL_TRUE; case AL_FORMAT_51CHN16: *chans = UserFmtX51; *type = UserFmtShort; return AL_TRUE; case AL_FORMAT_51CHN32: *chans = UserFmtX51; *type = UserFmtFloat; return AL_TRUE; case AL_FORMAT_61CHN8: *chans = UserFmtX61; *type = UserFmtUByte; return AL_TRUE; case AL_FORMAT_61CHN16: *chans = UserFmtX61; *type = UserFmtShort; return AL_TRUE; case AL_FORMAT_61CHN32: *chans = UserFmtX61; *type = UserFmtFloat; return AL_TRUE; case AL_FORMAT_71CHN8: *chans = UserFmtX71; *type = UserFmtUByte; return AL_TRUE; case AL_FORMAT_71CHN16: *chans = UserFmtX71; *type = UserFmtShort; return AL_TRUE; case AL_FORMAT_71CHN32: *chans = UserFmtX71; *type = UserFmtFloat; return AL_TRUE; case AL_FORMAT_MONO_MULAW: *chans = UserFmtMono; *type = UserFmtMulaw; return AL_TRUE; case AL_FORMAT_STEREO_MULAW: *chans = UserFmtStereo; *type = UserFmtMulaw; return AL_TRUE; case AL_FORMAT_QUAD_MULAW: *chans = UserFmtQuad; *type = UserFmtMulaw; return AL_TRUE; case AL_FORMAT_REAR_MULAW: *chans = UserFmtRear; *type = UserFmtMulaw; return AL_TRUE; case AL_FORMAT_51CHN_MULAW: *chans = UserFmtX51; *type = UserFmtMulaw; return AL_TRUE; case AL_FORMAT_61CHN_MULAW: *chans = UserFmtX61; *type = UserFmtMulaw; return AL_TRUE; case AL_FORMAT_71CHN_MULAW: *chans = UserFmtX71; *type = UserFmtMulaw; return AL_TRUE; } return AL_FALSE; } ALuint BytesFromFmt(enum FmtType type) { switch(type) { case FmtUByte: return sizeof(ALubyte); case FmtShort: return sizeof(ALshort); case FmtFloat: return sizeof(ALfloat); } return 0; } ALuint ChannelsFromFmt(enum FmtChannels chans) { switch(chans) { case FmtMono: return 1; case FmtStereo: return 2; case FmtRear: return 2; case FmtQuad: return 4; case FmtX51: return 6; case FmtX61: return 7; case FmtX71: return 8; } return 0; } ALboolean DecomposeFormat(ALenum format, enum FmtChannels *chans, enum FmtType *type) { switch(format) { case AL_FORMAT_MONO8: *chans = FmtMono; *type = FmtUByte; return AL_TRUE; case AL_FORMAT_MONO16: *chans = FmtMono; *type = FmtShort; return AL_TRUE; case AL_FORMAT_MONO_FLOAT32: *chans = FmtMono; *type = FmtFloat; return AL_TRUE; case AL_FORMAT_STEREO8: *chans = FmtStereo; *type = FmtUByte; return AL_TRUE; case AL_FORMAT_STEREO16: *chans = FmtStereo; *type = FmtShort; return AL_TRUE; case AL_FORMAT_STEREO_FLOAT32: *chans = FmtStereo; *type = FmtFloat; return AL_TRUE; case AL_FORMAT_QUAD8_LOKI: case AL_FORMAT_QUAD8: *chans = FmtQuad; *type = FmtUByte; return AL_TRUE; case AL_FORMAT_QUAD16_LOKI: case AL_FORMAT_QUAD16: *chans = FmtQuad; *type = FmtShort; return AL_TRUE; case AL_FORMAT_QUAD32: *chans = FmtQuad; *type = FmtFloat; return AL_TRUE; case AL_FORMAT_REAR8: *chans = FmtRear; *type = FmtUByte; return AL_TRUE; case AL_FORMAT_REAR16: *chans = FmtRear; *type = FmtShort; return AL_TRUE; case AL_FORMAT_REAR32: *chans = FmtRear; *type = FmtFloat; return AL_TRUE; case AL_FORMAT_51CHN8: *chans = FmtX51; *type = FmtUByte; return AL_TRUE; case AL_FORMAT_51CHN16: *chans = FmtX51; *type = FmtShort; return AL_TRUE; case AL_FORMAT_51CHN32: *chans = FmtX51; *type = FmtFloat; return AL_TRUE; case AL_FORMAT_61CHN8: *chans = FmtX61; *type = FmtUByte; return AL_TRUE; case AL_FORMAT_61CHN16: *chans = FmtX61; *type = FmtShort; return AL_TRUE; case AL_FORMAT_61CHN32: *chans = FmtX61; *type = FmtFloat; return AL_TRUE; case AL_FORMAT_71CHN8: *chans = FmtX71; *type = FmtUByte; return AL_TRUE; case AL_FORMAT_71CHN16: *chans = FmtX71; *type = FmtShort; return AL_TRUE; case AL_FORMAT_71CHN32: *chans = FmtX71; *type = FmtFloat; return AL_TRUE; } return AL_FALSE; } /* * ReleaseALBuffers() * * INTERNAL: Called to destroy any buffers that still exist on the device */ ALvoid ReleaseALBuffers(ALCdevice *device) { ALsizei i; for(i = 0;i < device->BufferMap.size;i++) { ALbuffer *temp = device->BufferMap.array[i].value; device->BufferMap.array[i].value = NULL; free(temp->data); ALTHUNK_REMOVEENTRY(temp->buffer); memset(temp, 0, sizeof(ALbuffer)); free(temp); } }