17f7cb9a53
* Added Flightgear multiplayer output interface to uhd_modes.py. This allows flight with live traffic in fgfs. * Quaternion library borrowed from PyPi and modified to generate angle/axis representation and construct rotation quat from lat/lon to ECEF. * Miscellaneous enhancements and cleanup to fix timestamps, add aircraft type field (seems to be unused anyway), turnrate info
259 lines
7.9 KiB
Python
259 lines
7.9 KiB
Python
#
|
|
# Copyright 2010 Nick Foster
|
|
#
|
|
# This file is part of gr-air-modes
|
|
#
|
|
# gr-air-modes is free software; you can redistribute it and/or modify
|
|
# it under the terms of the GNU General Public License as published by
|
|
# the Free Software Foundation; either version 3, or (at your option)
|
|
# any later version.
|
|
#
|
|
# gr-air-modes is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License
|
|
# along with gr-air-modes; see the file COPYING. If not, write to
|
|
# the Free Software Foundation, Inc., 51 Franklin Street,
|
|
# Boston, MA 02110-1301, USA.
|
|
#
|
|
|
|
|
|
#!/usr/bin/env python
|
|
#from string import split, join
|
|
#from math import pi, floor, cos, acos
|
|
import math, time
|
|
#this implements CPR position decoding and encoding.
|
|
#the decoder is implemented as a class, cpr_decoder, which keeps state for local decoding.
|
|
#the encoder is cpr_encode([lat, lon], type (even=0, odd=1), and surface (0 for surface, 1 for airborne))
|
|
|
|
latz = 15
|
|
|
|
def nbits(surface):
|
|
return 17
|
|
# if surface == 1:
|
|
# return 19
|
|
# else:
|
|
# return 17
|
|
|
|
def nz(ctype):
|
|
return 4 * latz - ctype
|
|
|
|
def dlat(ctype, surface):
|
|
if surface == 1:
|
|
tmp = 90.0
|
|
else:
|
|
tmp = 360.0
|
|
|
|
nzcalc = nz(ctype)
|
|
if nzcalc == 0:
|
|
return tmp
|
|
else:
|
|
return tmp / nzcalc
|
|
|
|
def nl_eo(declat_in, ctype):
|
|
return nl(declat_in) - ctype
|
|
|
|
def nl(declat_in):
|
|
return math.floor( (2.0*math.pi) * pow(math.acos(1.0- (1.0-math.cos(math.pi/(2.0*latz))) / pow( math.cos( (math.pi/180.0)*abs(declat_in) ) ,2.0) ),-1.0))
|
|
|
|
def dlon(declat_in, ctype, surface):
|
|
if surface == 1:
|
|
tmp = 90.0
|
|
else:
|
|
tmp = 360.0
|
|
nlcalc = nl_eo(declat_in, ctype)
|
|
if nlcalc == 0:
|
|
return tmp
|
|
else:
|
|
return tmp / nlcalc
|
|
|
|
def decode_lat(enclat, ctype, my_lat, surface):
|
|
tmp1 = dlat(ctype, surface)
|
|
tmp2 = float(enclat) / (2**nbits(surface))
|
|
j = math.floor(my_lat/tmp1) + math.floor(0.5 + (mod(my_lat, tmp1) / tmp1) - tmp2)
|
|
# print "dlat gives " + "%.6f " % tmp1 + "with j = " + "%.6f " % j + " and tmp2 = " + "%.6f" % tmp2 + " given enclat " + "%x" % enclat
|
|
|
|
return tmp1 * (j + tmp2)
|
|
|
|
def decode_lon(declat, enclon, ctype, my_lon, surface):
|
|
tmp1 = dlon(declat, ctype, surface)
|
|
tmp2 = float(enclon) / (2.0**nbits(surface))
|
|
m = math.floor(my_lon / tmp1) + math.floor(0.5 + (mod(my_lon, tmp1) / tmp1) - tmp2)
|
|
# print "dlon gives " + "%.6f " % tmp1 + "with m = " + "%.6f " % m + " and tmp2 = " + "%.6f" % tmp2 + " given enclon " + "%x" % enclon
|
|
|
|
return tmp1 * (m + tmp2)
|
|
|
|
|
|
def mod(a, b):
|
|
if a < 0:
|
|
a += 360.0
|
|
|
|
return a - b * math.floor(a / b)
|
|
|
|
def cpr_resolve_local(my_location, encoded_location, ctype, surface):
|
|
[my_lat, my_lon] = my_location
|
|
[enclat, enclon] = encoded_location
|
|
|
|
decoded_lat = decode_lat(enclat, ctype, my_lat, surface)
|
|
decoded_lon = decode_lon(decoded_lat, enclon, ctype, my_lon, surface)
|
|
|
|
return [decoded_lat, decoded_lon]
|
|
|
|
def cpr_resolve_global(evenpos, oddpos, mostrecent, surface): #ok this is considered working, tentatively
|
|
dlateven = dlat(0, surface);
|
|
dlatodd = dlat(1, surface);
|
|
|
|
evenpos = [float(evenpos[0]), float(evenpos[1])]
|
|
oddpos = [float(oddpos[0]), float(oddpos[1])]
|
|
|
|
#print "Even position: %x, %x\nOdd position: %x, %x" % (evenpos[0], evenpos[1], oddpos[0], oddpos[1],)
|
|
|
|
j = math.floor(((59*evenpos[0] - 60*oddpos[0])/2**nbits(surface)) + 0.5) #latitude index
|
|
|
|
rlateven = dlateven * (mod(j, 60)+evenpos[0]/2**nbits(surface))
|
|
rlatodd = dlatodd * (mod(j, 59)+ oddpos[0]/2**nbits(surface))
|
|
|
|
if nl(rlateven) != nl(rlatodd):
|
|
#print "Boundary straddle!"
|
|
return (None, None,)
|
|
|
|
if mostrecent == 0:
|
|
rlat = rlateven
|
|
else:
|
|
rlat = rlatodd
|
|
|
|
if rlat > 90:
|
|
rlat = rlat - 180.0
|
|
|
|
dl = dlon(rlat, mostrecent, surface)
|
|
nlthing = nl(rlat)
|
|
ni = nlthing - mostrecent
|
|
|
|
m = math.floor(((evenpos[1]*(nlthing-1)-oddpos[1]*(nlthing))/2**nbits(surface))+0.5) #longitude index, THIS LINE IS CORRECT
|
|
|
|
if mostrecent == 0:
|
|
enclon = evenpos[1]
|
|
else:
|
|
enclon = oddpos[1]
|
|
|
|
rlon = dl * (mod(ni+m, ni)+enclon/2**nbits(surface))
|
|
|
|
if rlon > 180:
|
|
rlon = rlon - 360.0
|
|
|
|
return [rlat, rlon]
|
|
|
|
|
|
#calculate range and bearing between two lat/lon points
|
|
#should probably throw this in the mlat py somewhere or make another lib
|
|
def range_bearing(loc_a, loc_b):
|
|
[a_lat, a_lon] = loc_a
|
|
[b_lat, b_lon] = loc_b
|
|
|
|
esquared = (1/298.257223563)*(2-(1/298.257223563))
|
|
earth_radius_mi = 3963.19059 * (math.pi / 180)
|
|
|
|
delta_lat = b_lat - a_lat
|
|
delta_lon = b_lon - a_lon
|
|
|
|
avg_lat = (a_lat + b_lat) / 2.0
|
|
|
|
R1 = earth_radius_mi*(1.0-esquared)/pow((1.0-esquared*pow(math.sin(avg_lat),2)),1.5)
|
|
|
|
R2 = earth_radius_mi/math.sqrt(1.0-esquared*pow(math.sin(avg_lat),2))
|
|
|
|
distance_North = R1*delta_lat
|
|
distance_East = R2*math.cos(avg_lat)*delta_lon
|
|
|
|
bearing = math.atan2(distance_East,distance_North) * (180.0 / math.pi)
|
|
if bearing < 0.0:
|
|
bearing += 360.0
|
|
|
|
rnge = math.hypot(distance_East,distance_North)
|
|
|
|
|
|
return [rnge, bearing]
|
|
|
|
|
|
class cpr_decoder:
|
|
def __init__(self, my_location):
|
|
self.my_location = my_location
|
|
self.lkplist = {}
|
|
self.evenlist = {}
|
|
self.oddlist = {}
|
|
|
|
def set_location(new_location):
|
|
self.my_location = new_location
|
|
|
|
def weed_poslists(self):
|
|
for poslist in [self.lkplist, self.evenlist, self.oddlist]:
|
|
for key, item in poslist.items():
|
|
if time.time() - item[2] > 900:
|
|
del poslist[key]
|
|
|
|
def decode(self, icao24, encoded_lat, encoded_lon, cpr_format, surface):
|
|
#add the info to the position reports list for global decoding
|
|
if cpr_format==1:
|
|
self.oddlist[icao24] = [encoded_lat, encoded_lon, time.time()]
|
|
else:
|
|
self.evenlist[icao24] = [encoded_lat, encoded_lon, time.time()]
|
|
|
|
[decoded_lat, decoded_lon] = [None, None]
|
|
|
|
#okay, let's traverse the lists and weed out those entries that are older than 15 minutes, as they're unlikely to be useful.
|
|
self.weed_poslists()
|
|
|
|
if surface==1:
|
|
validrange = 45
|
|
else:
|
|
validrange = 180
|
|
|
|
if icao24 in self.lkplist:
|
|
#do emitter-centered local decoding
|
|
[decoded_lat, decoded_lon] = cpr_resolve_local(self.lkplist[icao24][0:2], [encoded_lat, encoded_lon], cpr_format, surface)
|
|
self.lkplist[icao24] = [decoded_lat, decoded_lon, time.time()] #update the local position for next time
|
|
|
|
elif ((icao24 in self.evenlist) and (icao24 in self.oddlist) and abs(self.evenlist[icao24][2] - self.oddlist[icao24][2]) < 10):
|
|
newer = (self.oddlist[icao24][2] - self.evenlist[icao24][2]) > 0 #figure out which report is newer
|
|
[decoded_lat, decoded_lon] = cpr_resolve_global(self.evenlist[icao24][0:2], self.oddlist[icao24][0:2], newer, surface) #do a global decode
|
|
if decoded_lat is not None:
|
|
self.lkplist[icao24] = [decoded_lat, decoded_lon, time.time()]
|
|
|
|
elif self.my_location is not None: #if we have a location, use it
|
|
[local_lat, local_lon] = cpr_resolve_local(self.my_location, [encoded_lat, encoded_lon], cpr_format, surface) #try local decoding
|
|
[rnge, bearing] = range_bearing(self.my_location, [local_lat, local_lon])
|
|
if rnge < validrange: #if the local decoding can be guaranteed valid
|
|
self.lkplist[icao24] = [local_lat, local_lon, time.time()] #update the local position for next time
|
|
[decoded_lat, decoded_lon] = [local_lat, local_lon]
|
|
|
|
|
|
#print "settled on position: %.6f, %.6f" % (decoded_lat, decoded_lon,)
|
|
if decoded_lat is not None and self.my_location is not None:
|
|
[rnge, bearing] = range_bearing(self.my_location, [decoded_lat, decoded_lon])
|
|
else:
|
|
rnge = None
|
|
bearing = None
|
|
|
|
return [decoded_lat, decoded_lon, rnge, bearing]
|
|
|
|
#encode CPR position
|
|
def cpr_encode(lat, lon, ctype, surface):
|
|
if surface is True:
|
|
scalar = float(2**19)
|
|
else:
|
|
scalar = float(2**17)
|
|
|
|
dlati = float(dlat(ctype, False))
|
|
yz = math.floor(scalar * (mod(lat, dlati)/dlati) + 0.5)
|
|
rlat = dlati * ((yz / scalar) + math.floor(lat / dlati))
|
|
|
|
dloni = 360.0 / nl_eo(rlat, ctype)
|
|
xz = math.floor(scalar * (mod(lon, dloni)/dloni) + 0.5)
|
|
|
|
yz = int(mod(yz, scalar))
|
|
xz = int(mod(xz, scalar))
|
|
|
|
return (yz, xz) #lat, lon
|