gr-air-modes/lib/preamble_impl.cc

243 lines
9.7 KiB
C++

/*
# Copyright 2010 Nick Foster
# Copyright 2013 Nicholas Corgan
#
# This file is part of gr-air-modes
#
# gr-air-modes is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
#
# gr-air-modes is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with gr-air-modes; see the file COPYING. If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
#
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <ciso646>
#include "preamble_impl.h"
#include <gnuradio/io_signature.h>
#include <string.h>
#include <iostream>
#include <gnuradio/tags.h>
namespace gr {
air_modes::preamble::sptr air_modes::preamble::make(float channel_rate, float threshold_db) {
return gnuradio::get_initial_sptr(new air_modes::preamble_impl(channel_rate, threshold_db));
}
air_modes::preamble_impl::preamble_impl(float channel_rate, float threshold_db) :
gr::block ("preamble",
gr::io_signature::make2 (2, 2, sizeof(float), sizeof(float)), //stream 0 is received data, stream 1 is moving average for reference
gr::io_signature::make (1, 1, sizeof(float))) //the output soft symbols
{
d_chip_rate = 2000000; //2Mchips per second
set_rate(channel_rate);
set_threshold(threshold_db);
std::stringstream str;
str << name() << unique_id();
d_me = pmt::string_to_symbol(str.str());
d_key = pmt::string_to_symbol("preamble_found");
}
void air_modes::preamble_impl::set_rate(float channel_rate) {
d_samples_per_chip = channel_rate / d_chip_rate;
d_samples_per_symbol = d_samples_per_chip * 2;
d_check_width = 120 * d_samples_per_symbol;
d_sample_rate = channel_rate;
set_output_multiple(1+d_check_width*2);
set_history(d_samples_per_symbol);
}
void air_modes::preamble_impl::set_threshold(float threshold_db) {
d_threshold_db = threshold_db;
d_threshold = powf(10., threshold_db/20.); //the level that the sample must be above the moving average in order to qualify as a pulse
}
float air_modes::preamble_impl::get_threshold(void) {
return d_threshold_db;
}
float air_modes::preamble_impl::get_rate(void) {
return d_sample_rate;
}
static void integrate_and_dump(float *out, const float *in, int chips, int samps_per_chip) {
for(int i=0; i<chips; i++) {
float acc = 0;
for(int j=0; j<samps_per_chip; j++) {
acc += in[i*samps_per_chip+j];
}
out[i] = acc;
}
}
//the preamble pattern in bits
//fixme goes in .h
static const bool preamble_bits[] = {1, 0, 1, 0, 0, 0, 0, 1, 0, 1};
static double correlate_preamble(const float *in, int samples_per_chip) {
double corr = 0.0;
for(int i=0; i<10; i++) {
for(int j=0; j<samples_per_chip;j++)
if(preamble_bits[i]) corr += in[i*samples_per_chip+j];
}
return corr;
}
static pmt::pmt_t tag_to_timestamp(gr::tag_t tstamp, uint64_t abs_sample_cnt, int rate) {
pmt::pmt_t tstime = pmt::make_tuple(pmt::from_uint64(0), pmt::from_double(0));
if(tstamp.key == NULL) return tstime;
if(!pmt::is_symbol(tstamp.key)) return tstime;
if(pmt::symbol_to_string(tstamp.key) != "rx_time") return tstime;
//the timestamp tag has tstamp.offset, the sample index of the timestamp tag
//also tstamp.value, a pmt pair with (uint64, double) representing int and
//fractional timestamp, respectively.
//this function also gets an abs_sample_cnt which represents the sample count to
//find a timestamp for. sps is obviously samples per second.
//
//so (abs_sample_cnt - tstamp.offset) is the delay we apply to the tag
// int((abs_sample_cnt - tstamp.offset)/sps) is the integer offset
// (abs_sample_cnt - tstamp.offset)/sps is the fractional offset
uint64_t last_whole_stamp = pmt::to_uint64(pmt::tuple_ref(tstamp.value, 0));
double last_frac_stamp = pmt::to_double(pmt::tuple_ref(tstamp.value, 1));
uint64_t int_offset = int(abs_sample_cnt - tstamp.offset)/rate;
double frac_offset = ((abs_sample_cnt - tstamp.offset) % rate) / double(rate);
uint64_t abs_whole = last_whole_stamp + int_offset;
double abs_frac = last_frac_stamp + frac_offset;
if(abs_frac > 1.0f) {
abs_frac -= 1.0f;
abs_whole += 1.0f;
}
tstime = pmt::make_tuple(pmt::from_uint64(abs_whole), pmt::from_double(abs_frac));
return tstime;
}
int air_modes::preamble_impl::general_work(int noutput_items,
gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
const float *in = (const float *) input_items[0];
const float *inavg = (const float *) input_items[1];
int mininputs = std::min(ninput_items[0], ninput_items[1]); //they should be matched but let's be safe
//round number of input samples down to nearest d_samples_per_chip
//we also subtract off d_samples_per_chip to allow the bit center finder some leeway
const int ninputs = std::max(mininputs - (mininputs % int(d_samples_per_chip)) - int(d_samples_per_chip), 0);
if (ninputs <= 0) { consume_each(0); return 0; }
float *out = (float *) output_items[0];
if(0) std::cout << "Preamble called with " << ninputs << " samples" << std::endl;
//fixme move into .h
const int pulse_offsets[4] = { 0,
int(2 * d_samples_per_chip),
int(7 * d_samples_per_chip),
int(9 * d_samples_per_chip)
};
uint64_t abs_sample_cnt = nitems_read(0);
std::vector<gr::tag_t> tstamp_tags;
get_tags_in_range(tstamp_tags, 0, abs_sample_cnt, abs_sample_cnt + ninputs, pmt::string_to_symbol("rx_time"));
//tags.back() is the most recent timestamp, then.
if(tstamp_tags.size() > 0) {
d_timestamp = tstamp_tags.back();
}
for(int i=0; i < ninputs; i++) {
float pulse_threshold = inavg[i] * d_threshold;
if(in[i] > pulse_threshold) { //hey we got a candidate
if(in[i+1] > in[i]) continue; //wait for the peak
//check to see the rest of the pulses are there
if( in[i+pulse_offsets[1]] < pulse_threshold ) continue;
if( in[i+pulse_offsets[2]] < pulse_threshold ) continue;
if( in[i+pulse_offsets[3]] < pulse_threshold ) continue;
//get a more accurate bit center by finding the correlation peak across all four preamble bits
bool late, early;
int how_late = 0;
do {
double now_corr = correlate_preamble(in+i, d_samples_per_chip);
double late_corr = correlate_preamble(in+i+1, d_samples_per_chip);
double early_corr = correlate_preamble(in+i-1, d_samples_per_chip);
late = (late_corr > now_corr);
//early = (early_corr > now_corr);
if(late) { i++; how_late++; }
//if(early && i>0) { std::cout << "EARLY " << i << std::endl; i--; }
} while(late and how_late < d_samples_per_chip);// xor early);
if(0) std::cout << "We were " << how_late << " samples late" << std::endl;
//now check to see that the non-peak symbols in the preamble
//are below the peaks by threshold dB
float avgpeak = ( in[i+pulse_offsets[0]]
+ in[i+pulse_offsets[1]]
+ in[i+pulse_offsets[2]]
+ in[i+pulse_offsets[3]]) / 4.0;
float space_threshold = inavg[i] + (avgpeak - inavg[i])/d_threshold;
bool valid_preamble = true; //f'in c++
for( int j=1.5*d_samples_per_symbol; j<=3*d_samples_per_symbol; j++)
if(in[i+j] > space_threshold) valid_preamble = false;
for( int j=5*d_samples_per_symbol; j<=7.5*d_samples_per_symbol; j++)
if(in[i+j] > space_threshold) valid_preamble = false;
if(!valid_preamble) continue;
//be sure we've got enough room in the input buffer to copy out a whole packet
if(ninputs-i < 240*d_samples_per_chip) {
consume_each(std::max(i-1,0));
if(0) std::cout << "Preamble consumed " << std::max(i-1,0) << ", returned 0 (no room)" << std::endl;
return 0;
}
//all right i'm prepared to call this a preamble
for(int j=0; j<240; j++) {
out[j] = in[i+int(j*d_samples_per_chip)] - inavg[i];
}
//get the timestamp of the preamble
pmt::pmt_t tstamp = tag_to_timestamp(d_timestamp, abs_sample_cnt + i, d_sample_rate);
//now tag the preamble
add_item_tag(0, //stream ID
nitems_written(0), //sample
d_key, //frame_info
tstamp,
d_me //block src id
);
//produce only one output per work call -- TODO this should probably change
if(0) std::cout << "Preamble consumed " << i+240*d_samples_per_chip << "with i=" << i << ", returned 240" << std::endl;
consume_each(i+240*d_samples_per_chip);
return 240;
}
}
//didn't get anything this time
if(0) std::cout << "Preamble consumed " << ninputs << ", returned 0" << std::endl;
consume_each(ninputs);
return 0;
}
} //namespace gr