#!/usr/bin/env python # # Copyright 2010, 2012 Nick Foster # # This file is part of gr-air-modes # # gr-air-modes is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # gr-air-modes is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with gr-air-modes; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # import math, time from modes_exceptions import * #this implements CPR position decoding and encoding. #the decoder is implemented as a class, cpr_decoder, which keeps state for local decoding. #the encoder is cpr_encode([lat, lon], type (even=0, odd=1), and surface (0 for surface, 1 for airborne)) latz = 15 def nbits(surface): if surface == 1: return 19 else: return 17 def nz(ctype): return 4 * latz - ctype def dlat(ctype, surface): if surface == 1: tmp = 90.0 else: tmp = 360.0 nzcalc = nz(ctype) if nzcalc == 0: return tmp else: return tmp / nzcalc def nl_eo(declat_in, ctype): return nl(declat_in) - ctype def nl(declat_in): if abs(declat_in) >= 87.0: return 1.0 return math.floor( (2.0*math.pi) * pow(math.acos(1.0- (1.0-math.cos(math.pi/(2.0*latz))) / pow( math.cos( (math.pi/180.0)*abs(declat_in) ) ,2.0) ),-1.0)) def dlon(declat_in, ctype, surface): if surface == 1: tmp = 90.0 else: tmp = 360.0 nlcalc = nl_eo(declat_in, ctype) if nlcalc == 0: return tmp else: return tmp / max(nlcalc, 1.0) def decode_lat(enclat, ctype, my_lat, surface): tmp1 = dlat(ctype, surface) tmp2 = float(enclat) / (2**nbits(surface)) j = math.floor(my_lat/tmp1) + math.floor(0.5 + ((my_lat % tmp1) / tmp1) - tmp2) # print "dlat gives " + "%.6f " % tmp1 + "with j = " + "%.6f " % j + " and tmp2 = " + "%.6f" % tmp2 + " given enclat " + "%x" % enclat return tmp1 * (j + tmp2) def decode_lon(declat, enclon, ctype, my_lon, surface): tmp1 = dlon(declat, ctype, surface) tmp2 = float(enclon) / (2.0**nbits(surface)) m = math.floor(my_lon / tmp1) + math.floor(0.5 + ((my_lon % tmp1) / tmp1) - tmp2) # print "dlon gives " + "%.6f " % tmp1 + "with m = " + "%.6f " % m + " and tmp2 = " + "%.6f" % tmp2 + " given enclon " + "%x" % enclon return tmp1 * (m + tmp2) def cpr_resolve_local(my_location, encoded_location, ctype, surface): [my_lat, my_lon] = my_location [enclat, enclon] = encoded_location decoded_lat = decode_lat(enclat, ctype, my_lat, surface) decoded_lon = decode_lon(decoded_lat, enclon, ctype, my_lon, surface) return [decoded_lat, decoded_lon] def cpr_resolve_global(evenpos, oddpos, mostrecent, surface): dlateven = dlat(0, surface) dlatodd = dlat(1, surface) evenpos = [float(evenpos[0]), float(evenpos[1])] oddpos = [float(oddpos[0]), float(oddpos[1])] j = math.floor(((nz(1)*evenpos[0] - nz(0)*oddpos[0])/2**17) + 0.5) #latitude index rlateven = dlateven * ((j % nz(0))+evenpos[0]/2**17) rlatodd = dlatodd * ((j % nz(1))+ oddpos[0]/2**17) #limit to -90, 90 if rlateven > 270.0: rlateven -= 360.0 if rlatodd > 270.0: rlatodd -= 360.0 #This checks to see if the latitudes of the reports straddle a transition boundary #If so, you can't get a globally-resolvable location. if nl(rlateven) != nl(rlatodd): #print "Boundary straddle!" raise CPRBoundaryStraddleError if mostrecent == 0: rlat = rlateven else: rlat = rlatodd dl = dlon(rlat, mostrecent, surface) nlthing = nl(rlat) ni = max(nlthing - mostrecent, 1) m = math.floor(((evenpos[1]*(nlthing-1)-oddpos[1]*(nlthing))/2**17)+0.5) #longitude index if mostrecent == 0: enclon = evenpos[1] else: enclon = oddpos[1] rlon = dl * (((ni+m) % ni)+enclon/2**17) if rlon > 180: rlon = rlon - 360.0 return [rlat, rlon] #calculate range and bearing between two lat/lon points #should probably throw this in the mlat py somewhere or make another lib def range_bearing(loc_a, loc_b): [a_lat, a_lon] = loc_a [b_lat, b_lon] = loc_b esquared = (1/298.257223563)*(2-(1/298.257223563)) earth_radius_mi = 3963.19059 * (math.pi / 180) delta_lat = b_lat - a_lat delta_lon = b_lon - a_lon avg_lat = ((a_lat + b_lat) / 2.0) * math.pi / 180 R1 = earth_radius_mi*(1.0-esquared)/pow((1.0-esquared*pow(math.sin(avg_lat),2)),1.5) R2 = earth_radius_mi/math.sqrt(1.0-esquared*pow(math.sin(avg_lat),2)) distance_North = R1*delta_lat distance_East = R2*math.cos(avg_lat)*delta_lon bearing = math.atan2(distance_East,distance_North) * (180.0 / math.pi) if bearing < 0.0: bearing += 360.0 rnge = math.hypot(distance_East,distance_North) return [rnge, bearing] class cpr_decoder: def __init__(self, my_location): self.my_location = my_location self.lkplist = {} self.evenlist = {} self.oddlist = {} def set_location(new_location): self.my_location = new_location def weed_poslists(self): for poslist in [self.lkplist, self.evenlist, self.oddlist]: for key, item in poslist.items(): if time.time() - item[2] > 900: del poslist[key] def decode(self, icao24, encoded_lat, encoded_lon, cpr_format, surface): #add the info to the position reports list for global decoding if cpr_format==1: self.oddlist[icao24] = [encoded_lat, encoded_lon, time.time()] else: self.evenlist[icao24] = [encoded_lat, encoded_lon, time.time()] [decoded_lat, decoded_lon] = [None, None] #okay, let's traverse the lists and weed out those entries that are older than 15 minutes, as they're unlikely to be useful. self.weed_poslists() if icao24 in self.lkplist: #do emitter-centered local decoding [decoded_lat, decoded_lon] = cpr_resolve_local(self.lkplist[icao24][0:2], [encoded_lat, encoded_lon], cpr_format, surface) self.lkplist[icao24] = [decoded_lat, decoded_lon, time.time()] #update the local position for next time elif (icao24 in self.evenlist) \ and (icao24 in self.oddlist) \ and (abs(self.evenlist[icao24][2] - self.oddlist[icao24][2]) < 10) \ and (surface == 0): newer = (self.oddlist[icao24][2] - self.evenlist[icao24][2]) > 0 #figure out which report is newer [decoded_lat, decoded_lon] = cpr_resolve_global(self.evenlist[icao24][0:2], self.oddlist[icao24][0:2], newer, surface) #do a global decode self.lkplist[icao24] = [decoded_lat, decoded_lon, time.time()] #so we really can't guarantee that local decoding will work unless you are POSITIVE that you can't hear more than 180nm out. #this will USUALLY work, but you can't guarantee it! #elif surface == 1 and self.my_location is not None: # [local_lat, local_lon] = cpr_resolve_local(self.my_location, [encoded_lat, encoded_lon], cpr_format, surface) #try local decoding # [rnge, bearing] = range_bearing(self.my_location, [local_lat, local_lon]) # if rnge < validrange: #if the local decoding can be guaranteed valid # self.lkplist[icao24] = [local_lat, local_lon, time.time()] #update the local position for next time # [decoded_lat, decoded_lon] = [local_lat, local_lon] else: raise CPRNoPositionError if self.my_location is not None: [rnge, bearing] = range_bearing(self.my_location, [decoded_lat, decoded_lon]) else: rnge = None bearing = None return [decoded_lat, decoded_lon, rnge, bearing] #encode CPR position def cpr_encode(lat, lon, ctype, surface): if surface is True: scalar = float(2**19) else: scalar = float(2**17) dlati = float(dlat(ctype, False)) yz = math.floor(scalar * ((lat % dlati)/dlati) + 0.5) rlat = dlati * ((yz / scalar) + math.floor(lat / dlati)) nleo = nl_eo(rlat, ctype) if nleo == 0: dloni = 360.0 else: dloni = 360.0 / nl_eo(rlat, ctype) xz = math.floor(scalar * ((lon % dloni)/dloni) + 0.5) yz = int(yz % scalar) xz = int(xz % scalar) return (yz, xz) #lat, lon if __name__ == '__main__': import sys, random rounds = 10000 threshold = 1e-3 #0.001 deg lat/lon #this accuracy is highly dependent on latitude, since at high #latitudes the corresponding error in longitude is greater bs = 0 for i in range(0, rounds): decoder = cpr_decoder(None) even_lat = random.uniform(-85, 85) even_lon = random.uniform(-180,180) odd_lat = even_lat + 1e-2 odd_lon = min(even_lon + 1e-2, 180) #encode that position (evenenclat, evenenclon) = cpr_encode(even_lat, even_lon, False, False) (oddenclat, oddenclon) = cpr_encode(odd_lat, odd_lon, True, False) #perform a global decode icao = random.randint(0, 0xffffff) try: evenpos = decoder.decode(icao, evenenclat, evenenclon, False, False) #print "CPR global decode with only one report: %f %f" % (evenpos[0], evenpos[1]) raise Exception("CPR test failure: global decode with only one report") except CPRNoPositionError: pass try: (odddeclat, odddeclon, rng, brg) = decoder.decode(icao, oddenclat, oddenclon, True, False) except CPRBoundaryStraddleError: bs += 1 continue except CPRNoPositionError: raise Exception("CPR test failure: no decode after even/odd inputs") #print "Lat: %f Lon: %f" % (ac_lat, ac_lon) if abs(odddeclat - odd_lat) > threshold or abs(odddeclon - odd_lon) > threshold: print "odddeclat: %f odd_lat: %f" % (odddeclat, odd_lat) print "odddeclon: %f odd_lon: %f" % (odddeclon, odd_lon) raise Exception("CPR test failure: global decode error greater than threshold") nexteven_lat = odd_lat + 1e-2 nexteven_lon = min(odd_lon + 1e-2, 180) (nexteven_enclat, nexteven_enclon) = cpr_encode(nexteven_lat, nexteven_lon, False, False) try: (evendeclat, evendeclon) = cpr_resolve_local([even_lat, even_lon], [nexteven_enclat, nexteven_enclon], False, False) except CPRNoPositionError: raise Exception("CPR test failure: local decode failure to resolve") if abs(evendeclat - nexteven_lat) > threshold or abs(evendeclon - nexteven_lon) > threshold: raise Exception("CPR test failure: local decode error greater than threshold") print "CPR test successful. There were %i boundary straddles over %i rounds." % (bs, rounds)