#!/usr/bin/env python # # Copyright 2010, 2012 Nick Foster # # This file is part of gr-air-modes # # gr-air-modes is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # gr-air-modes is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with gr-air-modes; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # import math, time from air_modes.exceptions import * #this implements CPR position decoding and encoding. #the decoder is implemented as a class, cpr_decoder, which keeps state for local decoding. #the encoder is cpr_encode([lat, lon], type (even=0, odd=1), and surface (0 for surface, 1 for airborne)) #TODO: remove range/bearing calc from CPR decoder class. you can do this outside of the decoder. latz = 15 def nz(ctype): return 4 * latz - ctype def dlat(ctype, surface): if surface == 1: tmp = 90.0 else: tmp = 360.0 nzcalc = nz(ctype) if nzcalc == 0: return tmp else: return tmp / nzcalc def nl(declat_in): if abs(declat_in) >= 87.0: return 1.0 return math.floor( (2.0*math.pi) * math.acos(1.0- (1.0-math.cos(math.pi/(2.0*latz))) / math.cos( (math.pi/180.0)*abs(declat_in) )**2 )**-1) def dlon(declat_in, ctype, surface): if surface: tmp = 90.0 else: tmp = 360.0 nlcalc = max(nl(declat_in)-ctype, 1) return tmp / nlcalc def decode_lat(enclat, ctype, my_lat, surface): tmp1 = dlat(ctype, surface) tmp2 = float(enclat) / (2**17) j = math.floor(my_lat/tmp1) + math.floor(0.5 + ((my_lat % tmp1) / tmp1) - tmp2) return tmp1 * (j + tmp2) def decode_lon(declat, enclon, ctype, my_lon, surface): tmp1 = dlon(declat, ctype, surface) tmp2 = float(enclon) / (2**17) m = math.floor(my_lon / tmp1) + math.floor(0.5 + ((my_lon % tmp1) / tmp1) - tmp2) return tmp1 * (m + tmp2) def cpr_resolve_local(my_location, encoded_location, ctype, surface): [my_lat, my_lon] = my_location [enclat, enclon] = encoded_location decoded_lat = decode_lat(enclat, ctype, my_lat, surface) decoded_lon = decode_lon(decoded_lat, enclon, ctype, my_lon, surface) return [decoded_lat, decoded_lon] def cpr_resolve_global(evenpos, oddpos, mypos, mostrecent, surface): #cannot resolve surface positions unambiguously without knowing receiver position if surface and mypos is None: raise CPRNoPositionError dlateven = dlat(0, surface) dlatodd = dlat(1, surface) evenpos = [float(evenpos[0]), float(evenpos[1])] oddpos = [float(oddpos[0]), float(oddpos[1])] j = math.floor(((nz(1)*evenpos[0] - nz(0)*oddpos[0])/2**17) + 0.5) #latitude index rlateven = dlateven * ((j % nz(0))+evenpos[0]/2**17) rlatodd = dlatodd * ((j % nz(1))+ oddpos[0]/2**17) #limit to -90, 90 if rlateven > 270.0: rlateven -= 360.0 if rlatodd > 270.0: rlatodd -= 360.0 #This checks to see if the latitudes of the reports straddle a transition boundary #If so, you can't get a globally-resolvable location. if nl(rlateven) != nl(rlatodd): raise CPRBoundaryStraddleError if mostrecent == 0: rlat = rlateven else: rlat = rlatodd #disambiguate latitude if surface: if mypos[0] < 0: rlat -= 90 dl = dlon(rlat, mostrecent, surface) nl_rlat = nl(rlat) m = math.floor(((evenpos[1]*(nl_rlat-1)-oddpos[1]*nl_rlat)/2**17)+0.5) #longitude index #when surface positions straddle a disambiguation boundary (90 degrees), #surface decoding will fail. this might never be a problem in real life, but it'll fail in the #test case. the documentation doesn't mention it. if mostrecent == 0: enclon = evenpos[1] else: enclon = oddpos[1] rlon = dl * ((m % max(nl_rlat-mostrecent,1)) + enclon/2.**17) #print "DL: %f nl: %f m: %f rlon: %f" % (dl, nl_rlat, m, rlon) #print "evenpos: %x, oddpos: %x, mostrecent: %i" % (evenpos[1], oddpos[1], mostrecent) if surface: #longitudes need to be resolved to the nearest 90 degree segment to the receiver. wat = mypos[1] if wat < 0: wat += 360 zone = lambda lon: 90 * (int(lon) / 90) rlon += (zone(wat) - zone(rlon)) #limit to (-180, 180) if rlon > 180: rlon -= 360.0 return [rlat, rlon] #calculate range and bearing between two lat/lon points #should probably throw this in the mlat py somewhere or make another lib def range_bearing(loc_a, loc_b): [a_lat, a_lon] = loc_a [b_lat, b_lon] = loc_b esquared = (1/298.257223563)*(2-(1/298.257223563)) earth_radius_mi = 3963.19059 * (math.pi / 180) delta_lat = b_lat - a_lat delta_lon = b_lon - a_lon avg_lat = ((a_lat + b_lat) / 2.0) * math.pi / 180 R1 = earth_radius_mi*(1.0-esquared)/pow((1.0-esquared*pow(math.sin(avg_lat),2)),1.5) R2 = earth_radius_mi/math.sqrt(1.0-esquared*pow(math.sin(avg_lat),2)) distance_North = R1*delta_lat distance_East = R2*math.cos(avg_lat)*delta_lon bearing = math.atan2(distance_East,distance_North) * (180.0 / math.pi) if bearing < 0.0: bearing += 360.0 rnge = math.hypot(distance_East,distance_North) return [rnge, bearing] class cpr_decoder: def __init__(self, my_location): self.my_location = my_location self.evenlist = {} self.oddlist = {} self.evenlist_sfc = {} self.oddlist_sfc = {} def set_location(self, new_location): self.my_location = new_location def weed_poslists(self): for poslist in [self.evenlist, self.oddlist]: for key, item in tuple(poslist.items()): if time.time() - item[2] > 10: del poslist[key] for poslist in [self.evenlist_sfc, self.oddlist_sfc]: for key, item in tuple(poslist.items()): if time.time() - item[2] > 25: del poslist[key] def decode(self, icao24, encoded_lat, encoded_lon, cpr_format, surface): if surface: oddlist = self.oddlist_sfc evenlist = self.evenlist_sfc else: oddlist = self.oddlist evenlist = self.evenlist #add the info to the position reports list for global decoding if cpr_format==1: oddlist[icao24] = [encoded_lat, encoded_lon, time.time()] else: evenlist[icao24] = [encoded_lat, encoded_lon, time.time()] [decoded_lat, decoded_lon] = [None, None] #okay, let's traverse the lists and weed out those entries that are older than 10 seconds self.weed_poslists() if (icao24 in evenlist) \ and (icao24 in oddlist): newer = (oddlist[icao24][2] - evenlist[icao24][2]) > 0 #figure out which report is newer [decoded_lat, decoded_lon] = cpr_resolve_global(evenlist[icao24][0:2], oddlist[icao24][0:2], self.my_location, newer, surface) #do a global decode else: raise CPRNoPositionError if self.my_location is not None: [rnge, bearing] = range_bearing(self.my_location, [decoded_lat, decoded_lon]) else: rnge = None bearing = None return [decoded_lat, decoded_lon, rnge, bearing] #encode CPR position def cpr_encode(lat, lon, ctype, surface): if surface is True: scalar = 2.**19 else: scalar = 2.**17 #encode using 360 constant for segment size. dlati = dlat(ctype, False) yz = math.floor(scalar * ((lat % dlati)/dlati) + 0.5) rlat = dlati * ((yz / scalar) + math.floor(lat / dlati)) #encode using 360 constant for segment size. dloni = dlon(lat, ctype, False) xz = math.floor(scalar * ((lon % dloni)/dloni) + 0.5) yz = int(yz) & (2**17-1) xz = int(xz) & (2**17-1) return (yz, xz) #lat, lon if __name__ == '__main__': import sys, random rounds = 10001 threshold = 1e-3 #0.001 deg lat/lon #this accuracy is highly dependent on latitude, since at high #latitudes the corresponding error in longitude is greater bs = 0 surface = False lats = [i/(rounds/170.)-85 for i in range(0,rounds)] lons = [i/(rounds/360.)-180 for i in range(0,rounds)] for i in range(0, rounds): even_lat = lats[i] #even_lat = random.uniform(-85, 85) even_lon = lons[i] #even_lon = random.uniform(-180, 180) odd_lat = even_lat + 1e-3 odd_lon = min(even_lon + 1e-3, 180) decoder = cpr_decoder([odd_lat, odd_lon]) #encode that position (evenenclat, evenenclon) = cpr_encode(even_lat, even_lon, False, surface) (oddenclat, oddenclon) = cpr_encode(odd_lat, odd_lon, True, surface) #try to perform a global decode -- this should fail since the decoder #only has heard one position. need two for global decoding. icao = random.randint(0, 0xffffff) try: evenpos = decoder.decode(icao, evenenclat, evenenclon, False, surface) raise Exception("CPR test failure: global decode with only one report") except CPRNoPositionError: pass #now try to do a real decode with the last packet's odd complement #watch for a boundary straddle -- this isn't fatal, it just indicates #that the even and odd reports lie on either side of a longitudinal boundary #and so you can't get a position try: (odddeclat, odddeclon, rng, brg) = decoder.decode(icao, oddenclat, oddenclon, True, surface) except CPRBoundaryStraddleError: bs += 1 continue except CPRNoPositionError: raise Exception("CPR test failure: no decode after even/odd inputs") if abs(odddeclat - odd_lat) > threshold or abs(odddeclon - odd_lon) > threshold: print("F odddeclat: %f odd_lat: %f" % (odddeclat, odd_lat)) print( "F odddeclon: %f odd_lon: %f" % (odddeclon, odd_lon)) raise Exception("CPR test failure: global decode error greater than threshold") # else: # print("S odddeclat: %f odd_lat: %f" % (odddeclat, odd_lat)) # print("S odddeclon: %f odd_lon: %f" % (odddeclon, odd_lon)) nexteven_lat = odd_lat + 1e-3 nexteven_lon = min(odd_lon + 1e-3, 180) (nexteven_enclat, nexteven_enclon) = cpr_encode(nexteven_lat, nexteven_lon, False, surface) #try a locally-referenced decode try: (evendeclat, evendeclon) = cpr_resolve_local([even_lat, even_lon], [nexteven_enclat, nexteven_enclon], False, surface) except CPRNoPositionError: raise Exception("CPR test failure: local decode failure to resolve") #check to see if the positions were valid if abs(evendeclat - nexteven_lat) > threshold or abs(evendeclon - nexteven_lon) > threshold: print("F evendeclat: %f nexteven_lat: %f evenlat: %f" % (evendeclat, nexteven_lat, even_lat)) print("F evendeclon: %f nexteven_lon: %f evenlon: %f" % (evendeclon, nexteven_lon, even_lon)) raise Exception("CPR test failure: local decode error greater than threshold") print("CPR test successful. There were %i boundary straddles over %i rounds." % (bs, rounds))