2010-12-06 09:43:13 +08:00
#!/usr/bin/python
import math
import numpy
from scipy . ndimage import map_coordinates
#functions for multilateration.
2011-07-13 15:10:26 +08:00
#this library is more or less based around the so-called "GPS equation", the canonical
#iterative method for getting position from GPS satellite time difference of arrival data.
#here, instead of multiple orbiting satellites with known time reference and position,
#we have multiple fixed stations with known time references (GPSDO, hopefully) and known
#locations (again, GPSDO).
2010-12-06 09:43:13 +08:00
#NB: because of the way this solver works, at least 3 stations and timestamps
#are required. this function will not return hyperbolae for underconstrained systems.
#TODO: get HDOP out of this so we can draw circles of likely position and indicate constraint
########################END NOTES#######################################
#this is a 10x10-degree WGS84 geoid datum, in meters relative to the WGS84 reference ellipsoid. given the maximum slope, you should probably interpolate.
#NIMA suggests a 2x2 interpolation using four neighbors. we'll go cubic spline JUST BECAUSE WE CAN
wgs84_geoid = numpy . array ( [ [ 13 , 13 , 13 , 13 , 13 , 13 , 13 , 13 , 13 , 13 , 13 , 13 , 13 , 13 , 13 , 13 , 13 , 13 , 13 , 13 , 13 , 13 , 13 , 13 , 13 , 13 , 13 , 13 , 13 , 13 , 13 , 13 , 13 , 13 , 13 , 13 ] , #90N
[ 3 , 1 , - 2 , - 3 , - 3 , - 3 , - 1 , 3 , 1 , 5 , 9 , 11 , 19 , 27 , 31 , 34 , 33 , 34 , 33 , 34 , 28 , 23 , 17 , 13 , 9 , 4 , 4 , 1 , - 2 , - 2 , 0 , 2 , 3 , 2 , 1 , 1 ] , #80N
[ 2 , 2 , 1 , - 1 , - 3 , - 7 , - 14 , - 24 , - 27 , - 25 , - 19 , 3 , 24 , 37 , 47 , 60 , 61 , 58 , 51 , 43 , 29 , 20 , 12 , 5 , - 2 , - 10 , - 14 , - 12 , - 10 , - 14 , - 12 , - 6 , - 2 , 3 , 6 , 4 ] , #70N
[ 2 , 9 , 17 , 10 , 13 , 1 , - 14 , - 30 , - 39 , - 46 , - 42 , - 21 , 6 , 29 , 49 , 65 , 60 , 57 , 47 , 41 , 21 , 18 , 14 , 7 , - 3 , - 22 , - 29 , - 32 , - 32 , - 26 , - 15 , - 2 , 13 , 17 , 19 , 6 ] , #60N
[ - 8 , 8 , 8 , 1 , - 11 , - 19 , - 16 , - 18 , - 22 , - 35 , - 40 , - 26 , - 12 , 24 , 45 , 63 , 62 , 59 , 47 , 48 , 42 , 28 , 12 , - 10 , - 19 , - 33 , - 43 , - 42 , - 43 , - 29 , - 2 , 17 , 23 , 22 , 6 , 2 ] , #50N
[ - 12 , - 10 , - 13 , - 20 , - 31 , - 34 , - 21 , - 16 , - 26 , - 34 , - 33 , - 35 , - 26 , 2 , 33 , 59 , 52 , 51 , 52 , 48 , 35 , 40 , 33 , - 9 , - 28 , - 39 , - 48 , - 59 , - 50 , - 28 , 3 , 23 , 37 , 18 , - 1 , - 11 ] , #40N
[ - 7 , - 5 , - 8 , - 15 , - 28 , - 40 , - 42 , - 29 , - 22 , - 26 , - 32 , - 51 , - 40 , - 17 , 17 , 31 , 34 , 44 , 36 , 28 , 29 , 17 , 12 , - 20 , - 15 , - 40 , - 33 , - 34 , - 34 , - 28 , 7 , 29 , 43 , 20 , 4 , - 6 ] , #30N
[ 5 , 10 , 7 , - 7 , - 23 , - 39 , - 47 , - 34 , - 9 , - 10 , - 20 , - 45 , - 48 , - 32 , - 9 , 17 , 25 , 31 , 31 , 26 , 15 , 6 , 1 , - 29 , - 44 , - 61 , - 67 , - 59 , - 36 , - 11 , 21 , 39 , 49 , 39 , 22 , 10 ] , #20N
[ 13 , 12 , 11 , 2 , - 11 , - 28 , - 38 , - 29 , - 10 , 3 , 1 , - 11 , - 41 , - 42 , - 16 , 3 , 17 , 33 , 22 , 23 , 2 , - 3 , - 7 , - 36 , - 59 , - 90 , - 95 , - 63 , - 24 , 12 , 53 , 60 , 58 , 46 , 36 , 26 ] , #10N
[ 22 , 16 , 17 , 13 , 1 , - 12 , - 23 , - 20 , - 14 , - 3 , 14 , 10 , - 15 , - 27 , - 18 , 3 , 12 , 20 , 18 , 12 , - 13 , - 9 , - 28 , - 49 , - 62 , - 89 , - 102 , - 63 , - 9 , 33 , 58 , 73 , 74 , 63 , 50 , 32 ] , #0
[ 36 , 22 , 11 , 6 , - 1 , - 8 , - 10 , - 8 , - 11 , - 9 , 1 , 32 , 4 , - 18 , - 13 , - 9 , 4 , 14 , 12 , 13 , - 2 , - 14 , - 25 , - 32 , - 38 , - 60 , - 75 , - 63 , - 26 , 0 , 35 , 52 , 68 , 76 , 64 , 52 ] , #10S
[ 51 , 27 , 10 , 0 , - 9 , - 11 , - 5 , - 2 , - 3 , - 1 , 9 , 35 , 20 , - 5 , - 6 , - 5 , 0 , 13 , 17 , 23 , 21 , 8 , - 9 , - 10 , - 11 , - 20 , - 40 , - 47 , - 45 , - 25 , 5 , 23 , 45 , 58 , 57 , 63 ] , #20S
[ 46 , 22 , 5 , - 2 , - 8 , - 13 , - 10 , - 7 , - 4 , 1 , 9 , 32 , 16 , 4 , - 8 , 4 , 12 , 15 , 22 , 27 , 34 , 29 , 14 , 15 , 15 , 7 , - 9 , - 25 , - 37 , - 39 , - 23 , - 14 , 15 , 33 , 34 , 45 ] , #30S
[ 21 , 6 , 1 , - 7 , - 12 , - 12 , - 12 , - 10 , - 7 , - 1 , 8 , 23 , 15 , - 2 , - 6 , 6 , 21 , 24 , 18 , 26 , 31 , 33 , 39 , 41 , 30 , 24 , 13 , - 2 , - 20 , - 32 , - 33 , - 27 , - 14 , - 2 , 5 , 20 ] , #40S
[ - 15 , - 18 , - 18 , - 16 , - 17 , - 15 , - 10 , - 10 , - 8 , - 2 , 6 , 14 , 13 , 3 , 3 , 10 , 20 , 27 , 25 , 26 , 34 , 39 , 45 , 45 , 38 , 39 , 28 , 13 , - 1 , - 15 , - 22 , - 22 , - 18 , - 15 , - 14 , - 10 ] , #50S
[ - 45 , - 43 , - 37 , - 32 , - 30 , - 26 , - 23 , - 22 , - 16 , - 10 , - 2 , 10 , 20 , 20 , 21 , 24 , 22 , 17 , 16 , 19 , 25 , 30 , 35 , 35 , 33 , 30 , 27 , 10 , - 2 , - 14 , - 23 , - 30 , - 33 , - 29 , - 35 , - 43 ] , #60S
[ - 61 , - 60 , - 61 , - 55 , - 49 , - 44 , - 38 , - 31 , - 25 , - 16 , - 6 , 1 , 4 , 5 , 4 , 2 , 6 , 12 , 16 , 16 , 17 , 21 , 20 , 26 , 26 , 22 , 16 , 10 , - 1 , - 16 , - 29 , - 36 , - 46 , - 55 , - 54 , - 59 ] , #70S
[ - 53 , - 54 , - 55 , - 52 , - 48 , - 42 , - 38 , - 38 , - 29 , - 26 , - 26 , - 24 , - 23 , - 21 , - 19 , - 16 , - 12 , - 8 , - 4 , - 1 , 1 , 4 , 4 , 6 , 5 , 4 , 2 , - 6 , - 15 , - 24 , - 33 , - 40 , - 48 , - 50 , - 53 , - 52 ] , #80S
[ - 30 , - 30 , - 30 , - 30 , - 30 , - 30 , - 30 , - 30 , - 30 , - 30 , - 30 , - 30 , - 30 , - 30 , - 30 , - 30 , - 30 , - 30 , - 30 , - 30 , - 30 , - 30 , - 30 , - 30 , - 30 , - 30 , - 30 , - 30 , - 30 , - 30 , - 30 , - 30 , - 30 , - 30 , - 30 , - 30 ] ] , #90S
dtype = numpy . float )
#ok this calculates the geoid offset from the reference ellipsoid
#combined with LLH->ECEF this gets you XYZ for a ground-referenced point
def wgs84_height ( lat , lon ) :
yi = numpy . array ( [ 9 - lat / 10.0 ] )
xi = numpy . array ( [ 18 + lon / 10.0 ] )
return float ( map_coordinates ( wgs84_geoid , [ yi , xi ] ) )
#WGS84 reference ellipsoid constants
wgs84_a = 6378137.0
wgs84_b = 6356752.314245
wgs84_e2 = 0.0066943799901975848
wgs84_a2 = wgs84_a * * 2 #to speed things up a bit
wgs84_b2 = wgs84_b * * 2
#convert ECEF to lat/lon/alt without geoid correction
#returns alt in meters
def ecef2llh ( ( x , y , z ) ) :
ep = math . sqrt ( ( wgs84_a2 - wgs84_b2 ) / wgs84_b2 )
p = math . sqrt ( x * * 2 + y * * 2 )
th = math . atan2 ( wgs84_a * z , wgs84_b * p )
lon = math . atan2 ( y , x )
lat = math . atan2 ( z + ep * * 2 * wgs84_b * math . sin ( th ) * * 3 , p - wgs84_e2 * wgs84_a * math . cos ( th ) * * 3 )
N = wgs84_a / math . sqrt ( 1 - wgs84_e2 * math . sin ( lat ) * * 2 )
alt = p / math . cos ( lat ) - N
lon * = ( 180. / math . pi )
lat * = ( 180. / math . pi )
return [ lat , lon , alt ]
#convert lat/lon/alt coords to ECEF without geoid correction, WGS84 model
#remember that alt is in meters
def llh2ecef ( ( lat , lon , alt ) ) :
lat * = ( math . pi / 180.0 )
lon * = ( math . pi / 180.0 )
n = lambda x : wgs84_a / math . sqrt ( 1 - wgs84_e2 * ( math . sin ( x ) * * 2 ) )
x = ( n ( lat ) + alt ) * math . cos ( lat ) * math . cos ( lon )
y = ( n ( lat ) + alt ) * math . cos ( lat ) * math . sin ( lon )
z = ( n ( lat ) * ( 1 - wgs84_e2 ) + alt ) * math . sin ( lat )
return [ x , y , z ]
#do both of the above to get a geoid-corrected x,y,z position
def llh2geoid ( ( lat , lon , alt ) ) :
( x , y , z ) = llh2ecef ( ( lat , lon , alt + wgs84_height ( lat , lon ) ) )
return [ x , y , z ]
c = 299792458 / 1.0003 #modified for refractive index of air, why not
#this function is the iterative solver core of the mlat function below
2010-12-07 02:28:44 +08:00
#we use limit as a goal to stop solving when we get "close enough" (error magnitude in meters for that iteration)
#basically 20 meters is way less than the anticipated error of the system so it doesn't make sense to continue
#it's possible this could fail in situations where the solution converges slowly
2011-07-15 09:49:47 +08:00
#TODO: this fails to converge for some seriously advantageous geometry
def mlat_iter ( rel_stations , prange_obs , xguess = [ 0 , 0 , 0 ] , limit = 20 , maxrounds = 100 ) :
2010-12-07 02:28:44 +08:00
xerr = [ 1e9 , 1e9 , 1e9 ]
rounds = 0
while numpy . linalg . norm ( xerr ) > limit :
2010-12-06 09:43:13 +08:00
prange_est = [ ]
for station in rel_stations :
prange_est . append ( [ numpy . linalg . norm ( station - xguess ) ] )
dphat = prange_obs - prange_est
H = [ ]
for row in range ( 0 , len ( rel_stations ) ) :
2011-07-15 09:49:47 +08:00
H . append ( ( numpy . array ( - rel_stations [ row , : ] ) + xguess ) / prange_est [ row ] )
2010-12-06 09:43:13 +08:00
H = numpy . array ( H )
#now we have H, the Jacobian, and can solve for residual error
2011-07-15 09:49:47 +08:00
xerr = numpy . linalg . lstsq ( H , dphat ) [ 0 ] . flatten ( )
2010-12-06 09:43:13 +08:00
xguess + = xerr
2011-07-15 09:49:47 +08:00
print xguess , xerr
2010-12-07 02:28:44 +08:00
rounds + = 1
if rounds > maxrounds :
raise Exception ( " Failed to converge! " )
break
2010-12-06 09:43:13 +08:00
return xguess
#func mlat:
#uses a modified GPS pseudorange solver to locate aircraft by multilateration.
2010-12-07 02:28:44 +08:00
#replies is a list of reports, in ([lat, lon, alt], timestamp) format
2010-12-06 09:43:13 +08:00
#altitude is the barometric altitude of the aircraft as returned by the aircraft
#returns the estimated position of the aircraft in (lat, lon, alt) geoid-corrected WGS84.
2010-12-07 02:28:44 +08:00
#let's make it take a list of tuples so we can sort by them
def mlat ( replies , altitude ) :
sorted_replies = sorted ( replies , key = lambda time : time [ 1 ] )
stations = [ ]
timestamps = [ ]
#i really couldn't figure out how to unpack this, sorry
2011-07-13 15:10:26 +08:00
for sorted_reply in sorted_replies :
stations . append ( sorted_reply [ 0 ] )
timestamps . append ( sorted_reply [ 1 ] )
2010-12-06 09:43:13 +08:00
me_llh = stations [ 0 ]
me = llh2geoid ( stations [ 0 ] )
rel_stations = [ ] #list of stations in XYZ relative to me
for station in stations [ 1 : ] :
rel_stations . append ( numpy . array ( llh2geoid ( station ) ) - numpy . array ( me ) )
rel_stations . append ( [ 0 , 0 , 0 ] - numpy . array ( me ) ) #arne saknussemm, reporting in
rel_stations = numpy . array ( rel_stations ) #convert list of arrays to 2d array
2011-07-13 15:10:26 +08:00
#differentiate the timestamps to get TDOA
2010-12-06 09:43:13 +08:00
tdoa = [ ]
for stamp in timestamps [ 1 : ] :
tdoa . append ( stamp - timestamps [ 0 ] )
prange_obs = [ ]
for stamp in tdoa :
prange_obs . append ( [ c * stamp ] )
#so here we calc the estimated pseudorange to the center of the earth, using station[0] as a reference point for the geoid
2011-07-15 09:49:47 +08:00
#in other words, we say "if the aircraft were directly overhead of station[0], this is the prange to the center of the earth"
2010-12-06 09:43:13 +08:00
#this is a necessary approximation since we don't know the location of the aircraft yet
#if the dang earth were actually round this wouldn't be an issue
prange_obs . append ( [ numpy . linalg . norm ( llh2ecef ( ( me_llh [ 0 ] , me_llh [ 1 ] , altitude ) ) ) ] ) #use ECEF not geoid since alt is MSL not GPS
prange_obs = numpy . array ( prange_obs )
2011-07-15 09:49:47 +08:00
#xguess = llh2ecef([37.617175,-122.400843, 8000])-numpy.array(me)
2011-08-25 09:19:57 +08:00
#xguess = [0,0,0]
xguess = numpy . array ( llh2ecef ( [ me_llh [ 0 ] , me_llh [ 1 ] , altitude ] ) ) - numpy . array ( me )
2010-12-06 09:43:13 +08:00
2011-07-15 09:49:47 +08:00
xyzpos = mlat_iter ( rel_stations , prange_obs , xguess )
2010-12-06 09:43:13 +08:00
llhpos = ecef2llh ( xyzpos + me )
#now, we could return llhpos right now and be done with it.
#but the assumption we made above, namely that the aircraft is directly above the
#nearest station, results in significant error due to the oblateness of the Earth's geometry.
#so now we solve AGAIN, but this time with the corrected pseudorange of the aircraft altitude
#this might not be really useful in practice but the sim shows >50m errors without it
prange_obs [ - 1 ] = [ numpy . linalg . norm ( llh2ecef ( ( llhpos [ 0 ] , llhpos [ 1 ] , altitude ) ) ) ]
xyzpos_corr = mlat_iter ( rel_stations , prange_obs , xyzpos ) #start off with a really close guess
llhpos = ecef2llh ( xyzpos_corr + me )
2011-07-13 15:10:26 +08:00
#and now, what the hell, let's try to get dilution of precision data
2011-07-15 09:49:47 +08:00
#avec is the unit vector of relative ranges to the aircraft from each of the stations
2011-07-13 15:10:26 +08:00
# for i in range(len(avec)):
# avec[i] = numpy.array(avec[i]) / numpy.linalg.norm(numpy.array(avec[i]))
# numpy.append(avec, [[-1],[-1],[-1],[-1]], 1) #must be # of stations
# doparray = numpy.linalg.inv(avec.T*avec)
#the diagonal elements of doparray will be the x, y, z DOPs.
2010-12-06 09:43:13 +08:00
return llhpos