flightgear/utils/fgpanel/panel_io.cxx
2022-10-20 20:29:11 +08:00

580 lines
19 KiB
C++
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// panel_io.cxx - I/O for 2D panel.
//
// Written by David Megginson, started January 2000.
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
//
// $Id: panel_io.cxx,v 1.3 2016/08/25 23:41:34 allaert Exp $
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#ifdef HAVE_WINDOWS_H
#include <windows.h>
#endif
#include <string.h> // for strcmp()
#include <simgear/compiler.h>
#include <simgear/structure/exception.hxx>
#include <simgear/debug/logstream.hxx>
#include <simgear/misc/sg_path.hxx>
#include <simgear/props/props.hxx>
#include <simgear/props/condition.hxx>
#include <simgear/props/props_io.hxx>
#include "panel_io.hxx"
#include "ApplicationProperties.hxx"
#include "FGGroupLayer.hxx"
#include "FGLayeredInstrument.hxx"
#include "FGSwitchLayer.hxx"
#include "FGTextLayer.hxx"
#include "FGTexturedLayer.hxx"
////////////////////////////////////////////////////////////////////////
// Read and construct a panel.
//
// The panel is specified as a regular property list, and each of the
// instruments is its own, separate property list (and thus, a separate
// XML document). The functions in this section read in the files
// as property lists, then extract properties to set up the panel
// itself.
//
// A panel contains zero or more instruments.
//
// An instrument contains one or more layers and zero or more actions.
//
// A layer contains zero or more transformations.
//
// Some special types of layers also contain other objects, such as
// chunks of text or other layers.
//
// There are currently four types of layers:
//
// 1. Textured Layer (type="texture"), the default
// 2. Text Layer (type="text")
// 3. Switch Layer (type="switch")
// 4. Built-in Layer (type="built-in", must also specify class)
//
// The only built-in layer so far is the ribbon for the magnetic compass
// (class="compass-ribbon").
//
// There are three types of actions:
//
// 1. Adjust (type="adjust"), the default
// 2. Swap (type="swap")
// 3. Toggle (type="toggle")
//
// There are three types of transformations:
//
// 1. X shift (type="x-shift"), the default
// 2. Y shift (type="y-shift")
// 3. Rotation (type="rotation")
//
// Each of these may be associated with a property, so that a needle
// will rotate with the airspeed, for example, or may have a fixed
// floating-point value.
////////////////////////////////////////////////////////////////////////
/**
* Read a cropped texture from the instrument's property list.
*
* The x1 and y1 properties give the starting position of the texture
* (between 0.0 and 1.0), and the the x2 and y2 properties give the
* ending position. For example, to use the bottom-left quarter of a
* texture, x1=0.0, y1=0.0, x2=0.5, y2=0.5.
*/
static FGCroppedTexture_ptr
readTexture (const SGPropertyNode *node) {
SG_LOG(SG_COCKPIT, SG_DEBUG, "Read texture " << node->getName ());
return new FGCroppedTexture (node->getStringValue ("path"),
node->getFloatValue ("x1"),
node->getFloatValue ("y1"),
node->getFloatValue ("x2", 1.0),
node->getFloatValue ("y2", 1.0));
}
/**
* Test for a condition in the current node.
*/
////////////////////////////////////////////////////////////////////////
// Read a condition and use it if necessary.
////////////////////////////////////////////////////////////////////////
static void
readConditions (SGConditional *component, const SGPropertyNode *node) {
const SGPropertyNode * conditionNode (node->getChild ("condition"));
if (conditionNode != 0) {
// The top level is implicitly AND
component->setCondition (sgReadCondition (ApplicationProperties::Properties,
conditionNode));
}
}
/**
* Read a transformation from the instrument's property list.
*
* The panel module uses the transformations to slide or spin needles,
* knobs, and other indicators, and to place layers in the correct
* positions. Every layer starts centered exactly on the x,y co-ordinate,
* and many layers need to be moved or rotated simply to display the
* instrument correctly.
*
* There are three types of transformations:
*
* "x-shift" - move the layer horizontally.
*
* "y-shift" - move the layer vertically.
*
* "rotation" - rotate the layer.
*
* Each transformation may have a fixed offset, and may also have
* a floating-point property value to add to the offset. The
* floating-point property may be clamped to a minimum and/or
* maximum range and scaled (after clamping).
*
* Note that because of the way OpenGL works, transformations will
* appear to be applied backwards.
*/
static FGPanelTransformation *
readTransformation (const SGPropertyNode *node, const float w_scale, const float h_scale) {
FGPanelTransformation *t (new FGPanelTransformation);
const string name (node->getName ());
string type (node->getStringValue ("type"));
const string propName (node->getStringValue ("property", ""));
const SGPropertyNode *target (0);
if (type.empty ()) {
SG_LOG(SG_COCKPIT, SG_INFO,
"No type supplied for transformation " << name
<< " assuming \"rotation\"");
type = "rotation";
}
if (!propName.empty ()) {
target = ApplicationProperties::Properties->getNode (propName.c_str (), true);
}
t->node = target;
t->min = node->getFloatValue ("min", -9999999);
t->max = node->getFloatValue ("max", 99999999);
t->has_mod = node->hasChild ("modulator");
if (t->has_mod) {
t->mod = node->getFloatValue ("modulator");
}
t->factor = node->getFloatValue ("scale", 1.0);
t->offset = node->getFloatValue ("offset", 0.0);
// Check for an interpolation table
const SGPropertyNode *trans_table (node->getNode ("interpolation"));
if (trans_table != 0) {
SG_LOG(SG_COCKPIT, SG_INFO, "Found interpolation table with "
<< trans_table->nChildren() << " children");
t->table = new SGInterpTable();
for (int i = 0; i < trans_table->nChildren(); i++) {
const SGPropertyNode * node = trans_table->getChild(i);
if (!strcmp(node->getName(), "entry")) {
double ind = node->getDoubleValue("ind", 0.0);
double dep = node->getDoubleValue("dep", 0.0);
SG_LOG(SG_COCKPIT, SG_INFO, "Adding interpolation entry "
<< ind << "==>" << dep);
t->table->addEntry(ind, dep);
} else {
SG_LOG(SG_COCKPIT, SG_INFO, "Skipping " << node->getName()
<< " in interpolation");
}
}
} else {
t->table = 0;
}
// Move the layer horizontally.
if (type == "x-shift") {
t->type = FGPanelTransformation::XSHIFT;
// t->min *= w_scale; //removed by Martin Dressler
// t->max *= w_scale; //removed by Martin Dressler
t->offset *= w_scale;
t->factor *= w_scale; //Added by Martin Dressler
}
// Move the layer vertically.
else if (type == "y-shift") {
t->type = FGPanelTransformation::YSHIFT;
//t->min *= h_scale; //removed
//t->max *= h_scale; //removed
t->offset *= h_scale;
t->factor *= h_scale; //Added
}
// Rotate the layer. The rotation
// is in degrees, and does not need
// to scale with the instrument size.
else if (type == "rotation") {
t->type = FGPanelTransformation::ROTATION;
}
else {
SG_LOG(SG_COCKPIT, SG_ALERT, "Unrecognized transformation type " << type);
delete t;
return 0;
}
readConditions(t, node);
SG_LOG(SG_COCKPIT, SG_DEBUG, "Read transformation " << name);
return t;
}
/**
* Read a chunk of text from the instrument's property list.
*
* A text layer consists of one or more chunks of text. All chunks
* share the same font size and color (and eventually, font), but
* each can come from a different source. There are three types of
* text chunks:
*
* "literal" - a literal text string (the default)
*
* "text-value" - the current value of a string property
*
* "number-value" - the current value of a floating-point property.
*
* All three may also include a printf-style format string.
*/
FGTextLayer::Chunk *
readTextChunk (const SGPropertyNode *node) {
FGTextLayer::Chunk *chunk;
const string name (node->getStringValue ("name"));
string type (node->getStringValue ("type"));
const string format (node->getStringValue ("format"));
// Default to literal text.
if (type.empty ()) {
SG_LOG(SG_COCKPIT, SG_INFO, "No type provided for text chunk " << name
<< " assuming \"literal\"");
type = "literal";
}
// A literal text string.
if (type == "literal") {
const string text (node->getStringValue ("text"));
chunk = new FGTextLayer::Chunk (text, format);
} else if (type == "text-value") {
// The value of a string property.
const SGPropertyNode *target
(ApplicationProperties::Properties->getNode (node->getStringValue ("property"), true));
chunk = new FGTextLayer::Chunk (FGTextLayer::TEXT_VALUE, target, format);
} else if (type == "number-value") {
// The value of a float property.
const string propName (node->getStringValue ("property"));
const float scale (node->getFloatValue ("scale", 1.0));
const float offset (node->getFloatValue ("offset", 0.0));
const bool truncation (node->getBoolValue ("truncate", false));
const SGPropertyNode *target (ApplicationProperties::Properties->getNode (propName.c_str (), true));
chunk = new FGTextLayer::Chunk (FGTextLayer::DOUBLE_VALUE, target,
format, scale, offset, truncation);
} else {
// Unknown type.
SG_LOG(SG_COCKPIT, SG_ALERT, "Unrecognized type " << type
<< " for text chunk " << name);
return 0;
}
readConditions (chunk, node);
return chunk;
}
/**
* Read a single layer from an instrument's property list.
*
* Each instrument consists of one or more layers stacked on top
* of each other; the lower layers show through only where the upper
* layers contain an alpha component. Each layer can be moved
* horizontally and vertically and rotated using transformations.
*
* This module currently recognizes four kinds of layers:
*
* "texture" - a layer containing a texture (the default)
*
* "text" - a layer containing text
*
* "switch" - a layer that switches between two other layers
* based on the current value of a boolean property.
*
* "built-in" - a hard-coded layer supported by C++ code in FlightGear.
*
* Currently, the only built-in layer class is "compass-ribbon".
*/
static FGInstrumentLayer *
readLayer (const SGPropertyNode *node, const float w_scale, const float h_scale) {
FGInstrumentLayer *layer (NULL);
const string name (node->getStringValue ("name"));
string type (node->getStringValue ("type"));
int w (node->getIntValue ("w", -1));
int h (node->getIntValue ("h", -1));
const bool emissive (node->getBoolValue ("emissive", false));
if (w != -1) {
w = int (w * w_scale);
}
if (h != -1) {
h = int (h * h_scale);
}
if (type.empty ()) {
SG_LOG(SG_COCKPIT, SG_INFO,
"No type supplied for layer " << name
<< " assuming \"texture\"");
type = "texture";
}
// A textured instrument layer.
if (type == "texture") {
const FGCroppedTexture_ptr texture (readTexture (node->getNode ("texture")));
layer = new FGTexturedLayer (texture, w, h);
if (emissive) {
FGTexturedLayer *tl = (FGTexturedLayer*) layer;
tl->setEmissive (true);
}
} else if (type == "group") {
// A group of sublayers.
layer = new FGGroupLayer ();
for (int i = 0; i < node->nChildren(); i++) {
const SGPropertyNode *child = node->getChild (i);
if (!strcmp (child->getName (), "layer")) {
((FGGroupLayer *) layer)->addLayer (readLayer (child, w_scale, h_scale));
}
}
} else if (type == "text") {
// A textual instrument layer.
FGTextLayer *tlayer (new FGTextLayer (w, h)); // FIXME
// Set the text color.
const float red (node->getFloatValue ("color/red", 0.0));
const float green (node->getFloatValue ("color/green", 0.0));
const float blue (node->getFloatValue ("color/blue", 0.0));
tlayer->setColor (red, green, blue);
// Set the point size.
const float pointSize (node->getFloatValue ("point-size", 10.0) * w_scale);
tlayer->setPointSize (pointSize);
// Set the font.
const string fontName (node->getStringValue ("font", "7-Segment"));
tlayer->setFontName (fontName);
const SGPropertyNode *chunk_group (node->getNode ("chunks"));
if (chunk_group != 0) {
const int nChunks (chunk_group->nChildren ());
for (int i = 0; i < nChunks; i++) {
const SGPropertyNode *node (chunk_group->getChild (i));
if (!strcmp(node->getName (), "chunk")) {
FGTextLayer::Chunk * const chunk (readTextChunk (node));
if (chunk != 0) {
tlayer->addChunk (chunk);
}
} else {
SG_LOG(SG_COCKPIT, SG_INFO, "Skipping " << node->getName()
<< " in chunks");
}
}
layer = tlayer;
}
} else if (type == "switch") {
// A switch instrument layer.
layer = new FGSwitchLayer ();
for (int i = 0; i < node->nChildren (); i++) {
const SGPropertyNode *child (node->getChild (i));
if (!strcmp (child->getName (), "layer")) {
((FGGroupLayer *) layer)->addLayer (readLayer (child, w_scale, h_scale));
}
}
} else {
// An unknown type.
SG_LOG(SG_COCKPIT, SG_ALERT, "Unrecognized layer type " << type);
delete layer;
return 0;
}
//
// Get the transformations for each layer.
//
const SGPropertyNode *trans_group (node->getNode ("transformations"));
if (trans_group != 0) {
const int nTransformations (trans_group->nChildren ());
for (int i = 0; i < nTransformations; i++) {
const SGPropertyNode *node (trans_group->getChild (i));
if (!strcmp(node->getName (), "transformation")) {
FGPanelTransformation * const t (readTransformation (node, w_scale, h_scale));
if (t != 0) {
layer->addTransformation (t);
}
} else {
SG_LOG(SG_COCKPIT, SG_INFO, "Skipping " << node->getName()
<< " in transformations");
}
}
}
readConditions (layer, node);
SG_LOG(SG_COCKPIT, SG_DEBUG, "Read layer " << name);
return layer;
}
/**
* Read an instrument from a property list.
*
* The instrument consists of a preferred width and height
* (the panel may override these), together with a list of layers
* and a list of actions to be performed when the user clicks
* the mouse over the instrument. All co-ordinates are relative
* to the instrument's position, so instruments are fully relocatable;
* likewise, co-ordinates for actions and transformations will be
* scaled automatically if the instrument is not at its preferred size.
*/
static FGPanelInstrument *
readInstrument (const SGPropertyNode *node) {
const string name (node->getStringValue ("name"));
const int x (node->getIntValue ("x", -1));
const int y (node->getIntValue ("y", -1));
const int real_w (node->getIntValue ("w", -1));
const int real_h (node->getIntValue ("h", -1));
int w (node->getIntValue ("w-base", -1));
int h (node->getIntValue ("h-base", -1));
if (x == -1 || y == -1) {
SG_LOG(SG_COCKPIT, SG_ALERT,
"x and y positions must be specified and > 0");
return 0;
}
float w_scale (1.0);
float h_scale (1.0);
if (real_w != -1) {
w_scale = float (real_w) / float (w);
w = real_w;
}
if (real_h != -1) {
h_scale = float (real_h) / float (h);
h = real_h;
}
SG_LOG(SG_COCKPIT, SG_DEBUG, "Reading instrument " << name);
FGLayeredInstrument * const instrument
(new FGLayeredInstrument (x, y, w, h));
//
// Get the layers for the instrument.
//
const SGPropertyNode *layer_group (node->getNode ("layers"));
if (layer_group != 0) {
const int nLayers (layer_group->nChildren ());
for (int i = 0; i < nLayers; i++) {
const SGPropertyNode *node (layer_group->getChild (i));
if (!strcmp (node->getName (), "layer")) {
FGInstrumentLayer * const layer (readLayer (node, w_scale, h_scale));
if (layer != 0) {
instrument->addLayer (layer);
}
} else {
SG_LOG(SG_COCKPIT, SG_INFO, "Skipping " << node->getName ()
<< " in layers");
}
}
}
readConditions (instrument, node);
SG_LOG(SG_COCKPIT, SG_DEBUG, "Done reading instrument " << name);
return instrument;
}
/**
* Construct the panel from a property tree.
*/
SGSharedPtr<FGPanel>
FGReadablePanel::read (SGPropertyNode_ptr root) {
SG_LOG(SG_COCKPIT, SG_INFO, "Reading properties for panel " <<
root->getStringValue ("name", "[Unnamed Panel]"));
FGPanel * const panel (new FGPanel (root));
panel->setWidth (root->getIntValue ("w", 1024));
panel->setHeight (root->getIntValue ("h", 443));
SG_LOG(SG_COCKPIT, SG_INFO, "Size=" << panel->getWidth () << "x" << panel->getHeight ());
// Assign the background texture, if any, or a bogus chequerboard.
//
const string bgTexture (root->getStringValue ("background"));
if (!bgTexture.empty ()) {
panel->setBackground (new FGCroppedTexture (bgTexture));
}
panel->setBackgroundWidth (root->getDoubleValue( "background-width", 1.0));
panel->setBackgroundHeight (root->getDoubleValue( "background-height", 1.0));
SG_LOG(SG_COCKPIT, SG_INFO, "Set background texture to " << bgTexture);
//
// Get multibackground if any...
//
for (int i = 0; i < 8; i++) {
SGPropertyNode * const mbgNode (root->getChild ("multibackground", i));
string mbgTexture;
if (mbgNode != NULL) {
mbgTexture = mbgNode->getStringValue ();
}
if (mbgTexture.empty ()) {
if (i == 0) {
break; // if first texture is missing, ignore the rest
} else {
mbgTexture = "FOO"; // if others are missing - set default texture
}
}
panel->setMultiBackground (new FGCroppedTexture (mbgTexture), i);
SG_LOG(SG_COCKPIT, SG_INFO, "Set multi-background texture" << i << " to " << mbgTexture);
}
//
// Create each instrument.
//
SG_LOG( SG_COCKPIT, SG_INFO, "Reading panel instruments" );
const SGPropertyNode *instrument_group (root->getChild ("instruments"));
if (instrument_group != 0) {
const int nInstruments (instrument_group->nChildren ());
for (int i = 0; i < nInstruments; i++) {
const SGPropertyNode *node = instrument_group->getChild (i);
if (!strcmp (node->getName (), "instrument")) {
FGPanelInstrument * const instrument (readInstrument (node));
if (instrument != 0) {
panel->addInstrument (instrument);
}
} else {
SG_LOG(SG_COCKPIT, SG_INFO, "Skipping " << node->getName()
<< " in instruments section");
}
}
}
SG_LOG(SG_COCKPIT, SG_INFO, "Done reading panel instruments");
//
// Return the new panel.
//
return panel;
}
// end of panel_io.cxx