// panel_io.cxx - I/O for 2D panel. // // Written by David Megginson, started January 2000. // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. // // $Id: panel_io.cxx,v 1.3 2016/08/25 23:41:34 allaert Exp $ #ifdef HAVE_CONFIG_H #include #endif #ifdef HAVE_WINDOWS_H #include #endif #include // for strcmp() #include #include #include #include #include #include #include #include "panel_io.hxx" #include "ApplicationProperties.hxx" #include "FGGroupLayer.hxx" #include "FGLayeredInstrument.hxx" #include "FGSwitchLayer.hxx" #include "FGTextLayer.hxx" #include "FGTexturedLayer.hxx" //////////////////////////////////////////////////////////////////////// // Read and construct a panel. // // The panel is specified as a regular property list, and each of the // instruments is its own, separate property list (and thus, a separate // XML document). The functions in this section read in the files // as property lists, then extract properties to set up the panel // itself. // // A panel contains zero or more instruments. // // An instrument contains one or more layers and zero or more actions. // // A layer contains zero or more transformations. // // Some special types of layers also contain other objects, such as // chunks of text or other layers. // // There are currently four types of layers: // // 1. Textured Layer (type="texture"), the default // 2. Text Layer (type="text") // 3. Switch Layer (type="switch") // 4. Built-in Layer (type="built-in", must also specify class) // // The only built-in layer so far is the ribbon for the magnetic compass // (class="compass-ribbon"). // // There are three types of actions: // // 1. Adjust (type="adjust"), the default // 2. Swap (type="swap") // 3. Toggle (type="toggle") // // There are three types of transformations: // // 1. X shift (type="x-shift"), the default // 2. Y shift (type="y-shift") // 3. Rotation (type="rotation") // // Each of these may be associated with a property, so that a needle // will rotate with the airspeed, for example, or may have a fixed // floating-point value. //////////////////////////////////////////////////////////////////////// /** * Read a cropped texture from the instrument's property list. * * The x1 and y1 properties give the starting position of the texture * (between 0.0 and 1.0), and the the x2 and y2 properties give the * ending position. For example, to use the bottom-left quarter of a * texture, x1=0.0, y1=0.0, x2=0.5, y2=0.5. */ static FGCroppedTexture_ptr readTexture (const SGPropertyNode *node) { SG_LOG(SG_COCKPIT, SG_DEBUG, "Read texture " << node->getName ()); return new FGCroppedTexture (node->getStringValue ("path"), node->getFloatValue ("x1"), node->getFloatValue ("y1"), node->getFloatValue ("x2", 1.0), node->getFloatValue ("y2", 1.0)); } /** * Test for a condition in the current node. */ //////////////////////////////////////////////////////////////////////// // Read a condition and use it if necessary. //////////////////////////////////////////////////////////////////////// static void readConditions (SGConditional *component, const SGPropertyNode *node) { const SGPropertyNode * conditionNode (node->getChild ("condition")); if (conditionNode != 0) { // The top level is implicitly AND component->setCondition (sgReadCondition (ApplicationProperties::Properties, conditionNode)); } } /** * Read a transformation from the instrument's property list. * * The panel module uses the transformations to slide or spin needles, * knobs, and other indicators, and to place layers in the correct * positions. Every layer starts centered exactly on the x,y co-ordinate, * and many layers need to be moved or rotated simply to display the * instrument correctly. * * There are three types of transformations: * * "x-shift" - move the layer horizontally. * * "y-shift" - move the layer vertically. * * "rotation" - rotate the layer. * * Each transformation may have a fixed offset, and may also have * a floating-point property value to add to the offset. The * floating-point property may be clamped to a minimum and/or * maximum range and scaled (after clamping). * * Note that because of the way OpenGL works, transformations will * appear to be applied backwards. */ static FGPanelTransformation * readTransformation (const SGPropertyNode *node, const float w_scale, const float h_scale) { FGPanelTransformation *t (new FGPanelTransformation); const string name (node->getName ()); string type (node->getStringValue ("type")); const string propName (node->getStringValue ("property", "")); const SGPropertyNode *target (0); if (type.empty ()) { SG_LOG(SG_COCKPIT, SG_INFO, "No type supplied for transformation " << name << " assuming \"rotation\""); type = "rotation"; } if (!propName.empty ()) { target = ApplicationProperties::Properties->getNode (propName.c_str (), true); } t->node = target; t->min = node->getFloatValue ("min", -9999999); t->max = node->getFloatValue ("max", 99999999); t->has_mod = node->hasChild ("modulator"); if (t->has_mod) { t->mod = node->getFloatValue ("modulator"); } t->factor = node->getFloatValue ("scale", 1.0); t->offset = node->getFloatValue ("offset", 0.0); // Check for an interpolation table const SGPropertyNode *trans_table (node->getNode ("interpolation")); if (trans_table != 0) { SG_LOG(SG_COCKPIT, SG_INFO, "Found interpolation table with " << trans_table->nChildren() << " children"); t->table = new SGInterpTable(); for (int i = 0; i < trans_table->nChildren(); i++) { const SGPropertyNode * node = trans_table->getChild(i); if (!strcmp(node->getName(), "entry")) { double ind = node->getDoubleValue("ind", 0.0); double dep = node->getDoubleValue("dep", 0.0); SG_LOG(SG_COCKPIT, SG_INFO, "Adding interpolation entry " << ind << "==>" << dep); t->table->addEntry(ind, dep); } else { SG_LOG(SG_COCKPIT, SG_INFO, "Skipping " << node->getName() << " in interpolation"); } } } else { t->table = 0; } // Move the layer horizontally. if (type == "x-shift") { t->type = FGPanelTransformation::XSHIFT; // t->min *= w_scale; //removed by Martin Dressler // t->max *= w_scale; //removed by Martin Dressler t->offset *= w_scale; t->factor *= w_scale; //Added by Martin Dressler } // Move the layer vertically. else if (type == "y-shift") { t->type = FGPanelTransformation::YSHIFT; //t->min *= h_scale; //removed //t->max *= h_scale; //removed t->offset *= h_scale; t->factor *= h_scale; //Added } // Rotate the layer. The rotation // is in degrees, and does not need // to scale with the instrument size. else if (type == "rotation") { t->type = FGPanelTransformation::ROTATION; } else { SG_LOG(SG_COCKPIT, SG_ALERT, "Unrecognized transformation type " << type); delete t; return 0; } readConditions(t, node); SG_LOG(SG_COCKPIT, SG_DEBUG, "Read transformation " << name); return t; } /** * Read a chunk of text from the instrument's property list. * * A text layer consists of one or more chunks of text. All chunks * share the same font size and color (and eventually, font), but * each can come from a different source. There are three types of * text chunks: * * "literal" - a literal text string (the default) * * "text-value" - the current value of a string property * * "number-value" - the current value of a floating-point property. * * All three may also include a printf-style format string. */ FGTextLayer::Chunk * readTextChunk (const SGPropertyNode *node) { FGTextLayer::Chunk *chunk; const string name (node->getStringValue ("name")); string type (node->getStringValue ("type")); const string format (node->getStringValue ("format")); // Default to literal text. if (type.empty ()) { SG_LOG(SG_COCKPIT, SG_INFO, "No type provided for text chunk " << name << " assuming \"literal\""); type = "literal"; } // A literal text string. if (type == "literal") { const string text (node->getStringValue ("text")); chunk = new FGTextLayer::Chunk (text, format); } else if (type == "text-value") { // The value of a string property. const SGPropertyNode *target (ApplicationProperties::Properties->getNode (node->getStringValue ("property"), true)); chunk = new FGTextLayer::Chunk (FGTextLayer::TEXT_VALUE, target, format); } else if (type == "number-value") { // The value of a float property. const string propName (node->getStringValue ("property")); const float scale (node->getFloatValue ("scale", 1.0)); const float offset (node->getFloatValue ("offset", 0.0)); const bool truncation (node->getBoolValue ("truncate", false)); const SGPropertyNode *target (ApplicationProperties::Properties->getNode (propName.c_str (), true)); chunk = new FGTextLayer::Chunk (FGTextLayer::DOUBLE_VALUE, target, format, scale, offset, truncation); } else { // Unknown type. SG_LOG(SG_COCKPIT, SG_ALERT, "Unrecognized type " << type << " for text chunk " << name); return 0; } readConditions (chunk, node); return chunk; } /** * Read a single layer from an instrument's property list. * * Each instrument consists of one or more layers stacked on top * of each other; the lower layers show through only where the upper * layers contain an alpha component. Each layer can be moved * horizontally and vertically and rotated using transformations. * * This module currently recognizes four kinds of layers: * * "texture" - a layer containing a texture (the default) * * "text" - a layer containing text * * "switch" - a layer that switches between two other layers * based on the current value of a boolean property. * * "built-in" - a hard-coded layer supported by C++ code in FlightGear. * * Currently, the only built-in layer class is "compass-ribbon". */ static FGInstrumentLayer * readLayer (const SGPropertyNode *node, const float w_scale, const float h_scale) { FGInstrumentLayer *layer (NULL); const string name (node->getStringValue ("name")); string type (node->getStringValue ("type")); int w (node->getIntValue ("w", -1)); int h (node->getIntValue ("h", -1)); const bool emissive (node->getBoolValue ("emissive", false)); if (w != -1) { w = int (w * w_scale); } if (h != -1) { h = int (h * h_scale); } if (type.empty ()) { SG_LOG(SG_COCKPIT, SG_INFO, "No type supplied for layer " << name << " assuming \"texture\""); type = "texture"; } // A textured instrument layer. if (type == "texture") { const FGCroppedTexture_ptr texture (readTexture (node->getNode ("texture"))); layer = new FGTexturedLayer (texture, w, h); if (emissive) { FGTexturedLayer *tl = (FGTexturedLayer*) layer; tl->setEmissive (true); } } else if (type == "group") { // A group of sublayers. layer = new FGGroupLayer (); for (int i = 0; i < node->nChildren(); i++) { const SGPropertyNode *child = node->getChild (i); if (!strcmp (child->getName (), "layer")) { ((FGGroupLayer *) layer)->addLayer (readLayer (child, w_scale, h_scale)); } } } else if (type == "text") { // A textual instrument layer. FGTextLayer *tlayer (new FGTextLayer (w, h)); // FIXME // Set the text color. const float red (node->getFloatValue ("color/red", 0.0)); const float green (node->getFloatValue ("color/green", 0.0)); const float blue (node->getFloatValue ("color/blue", 0.0)); tlayer->setColor (red, green, blue); // Set the point size. const float pointSize (node->getFloatValue ("point-size", 10.0) * w_scale); tlayer->setPointSize (pointSize); // Set the font. const string fontName (node->getStringValue ("font", "7-Segment")); tlayer->setFontName (fontName); const SGPropertyNode *chunk_group (node->getNode ("chunks")); if (chunk_group != 0) { const int nChunks (chunk_group->nChildren ()); for (int i = 0; i < nChunks; i++) { const SGPropertyNode *node (chunk_group->getChild (i)); if (!strcmp(node->getName (), "chunk")) { FGTextLayer::Chunk * const chunk (readTextChunk (node)); if (chunk != 0) { tlayer->addChunk (chunk); } } else { SG_LOG(SG_COCKPIT, SG_INFO, "Skipping " << node->getName() << " in chunks"); } } layer = tlayer; } } else if (type == "switch") { // A switch instrument layer. layer = new FGSwitchLayer (); for (int i = 0; i < node->nChildren (); i++) { const SGPropertyNode *child (node->getChild (i)); if (!strcmp (child->getName (), "layer")) { ((FGGroupLayer *) layer)->addLayer (readLayer (child, w_scale, h_scale)); } } } else { // An unknown type. SG_LOG(SG_COCKPIT, SG_ALERT, "Unrecognized layer type " << type); delete layer; return 0; } // // Get the transformations for each layer. // const SGPropertyNode *trans_group (node->getNode ("transformations")); if (trans_group != 0) { const int nTransformations (trans_group->nChildren ()); for (int i = 0; i < nTransformations; i++) { const SGPropertyNode *node (trans_group->getChild (i)); if (!strcmp(node->getName (), "transformation")) { FGPanelTransformation * const t (readTransformation (node, w_scale, h_scale)); if (t != 0) { layer->addTransformation (t); } } else { SG_LOG(SG_COCKPIT, SG_INFO, "Skipping " << node->getName() << " in transformations"); } } } readConditions (layer, node); SG_LOG(SG_COCKPIT, SG_DEBUG, "Read layer " << name); return layer; } /** * Read an instrument from a property list. * * The instrument consists of a preferred width and height * (the panel may override these), together with a list of layers * and a list of actions to be performed when the user clicks * the mouse over the instrument. All co-ordinates are relative * to the instrument's position, so instruments are fully relocatable; * likewise, co-ordinates for actions and transformations will be * scaled automatically if the instrument is not at its preferred size. */ static FGPanelInstrument * readInstrument (const SGPropertyNode *node) { const string name (node->getStringValue ("name")); const int x (node->getIntValue ("x", -1)); const int y (node->getIntValue ("y", -1)); const int real_w (node->getIntValue ("w", -1)); const int real_h (node->getIntValue ("h", -1)); int w (node->getIntValue ("w-base", -1)); int h (node->getIntValue ("h-base", -1)); if (x == -1 || y == -1) { SG_LOG(SG_COCKPIT, SG_ALERT, "x and y positions must be specified and > 0"); return 0; } float w_scale (1.0); float h_scale (1.0); if (real_w != -1) { w_scale = float (real_w) / float (w); w = real_w; } if (real_h != -1) { h_scale = float (real_h) / float (h); h = real_h; } SG_LOG(SG_COCKPIT, SG_DEBUG, "Reading instrument " << name); FGLayeredInstrument * const instrument (new FGLayeredInstrument (x, y, w, h)); // // Get the layers for the instrument. // const SGPropertyNode *layer_group (node->getNode ("layers")); if (layer_group != 0) { const int nLayers (layer_group->nChildren ()); for (int i = 0; i < nLayers; i++) { const SGPropertyNode *node (layer_group->getChild (i)); if (!strcmp (node->getName (), "layer")) { FGInstrumentLayer * const layer (readLayer (node, w_scale, h_scale)); if (layer != 0) { instrument->addLayer (layer); } } else { SG_LOG(SG_COCKPIT, SG_INFO, "Skipping " << node->getName () << " in layers"); } } } readConditions (instrument, node); SG_LOG(SG_COCKPIT, SG_DEBUG, "Done reading instrument " << name); return instrument; } /** * Construct the panel from a property tree. */ SGSharedPtr FGReadablePanel::read (SGPropertyNode_ptr root) { SG_LOG(SG_COCKPIT, SG_INFO, "Reading properties for panel " << root->getStringValue ("name", "[Unnamed Panel]")); FGPanel * const panel (new FGPanel (root)); panel->setWidth (root->getIntValue ("w", 1024)); panel->setHeight (root->getIntValue ("h", 443)); SG_LOG(SG_COCKPIT, SG_INFO, "Size=" << panel->getWidth () << "x" << panel->getHeight ()); // Assign the background texture, if any, or a bogus chequerboard. // const string bgTexture (root->getStringValue ("background")); if (!bgTexture.empty ()) { panel->setBackground (new FGCroppedTexture (bgTexture)); } panel->setBackgroundWidth (root->getDoubleValue( "background-width", 1.0)); panel->setBackgroundHeight (root->getDoubleValue( "background-height", 1.0)); SG_LOG(SG_COCKPIT, SG_INFO, "Set background texture to " << bgTexture); // // Get multibackground if any... // for (int i = 0; i < 8; i++) { SGPropertyNode * const mbgNode (root->getChild ("multibackground", i)); string mbgTexture; if (mbgNode != NULL) { mbgTexture = mbgNode->getStringValue (); } if (mbgTexture.empty ()) { if (i == 0) { break; // if first texture is missing, ignore the rest } else { mbgTexture = "FOO"; // if others are missing - set default texture } } panel->setMultiBackground (new FGCroppedTexture (mbgTexture), i); SG_LOG(SG_COCKPIT, SG_INFO, "Set multi-background texture" << i << " to " << mbgTexture); } // // Create each instrument. // SG_LOG( SG_COCKPIT, SG_INFO, "Reading panel instruments" ); const SGPropertyNode *instrument_group (root->getChild ("instruments")); if (instrument_group != 0) { const int nInstruments (instrument_group->nChildren ()); for (int i = 0; i < nInstruments; i++) { const SGPropertyNode *node = instrument_group->getChild (i); if (!strcmp (node->getName (), "instrument")) { FGPanelInstrument * const instrument (readInstrument (node)); if (instrument != 0) { panel->addInstrument (instrument); } } else { SG_LOG(SG_COCKPIT, SG_INFO, "Skipping " << node->getName() << " in instruments section"); } } } SG_LOG(SG_COCKPIT, SG_INFO, "Done reading panel instruments"); // // Return the new panel. // return panel; } // end of panel_io.cxx