flightgear/3rdparty/iaxclient/lib/libspeex/nb_celp.c

1941 lines
58 KiB
C
Raw Normal View History

2022-10-20 20:29:11 +08:00
/* Copyright (C) 2002 Jean-Marc Valin
File: nb_celp.c
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of the Xiph.org Foundation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <math.h>
#include "nb_celp.h"
#include "lpc.h"
#include "lsp.h"
#include "ltp.h"
#include "quant_lsp.h"
#include "cb_search.h"
#include "filters.h"
#include "stack_alloc.h"
#include "vq.h"
#include <speex/speex_bits.h>
#include "vbr.h"
#include "misc.h"
#include <speex/speex_callbacks.h>
#ifndef M_PI
#define M_PI 3.14159265358979323846 /* pi */
#endif
#ifndef NULL
#define NULL 0
#endif
#define SUBMODE(x) st->submodes[st->submodeID]->x
#ifdef FIXED_POINT
const spx_word32_t ol_gain_table[32]={18900, 25150, 33468, 44536, 59265, 78865, 104946, 139653, 185838, 247297, 329081, 437913, 582736, 775454, 1031906, 1373169, 1827293, 2431601, 3235761, 4305867, 5729870, 7624808, 10146425, 13501971, 17967238, 23909222, 31816294, 42338330, 56340132, 74972501, 99766822, 132760927};
const spx_word16_t exc_gain_quant_scal3_bound[7]={1841, 3883, 6051, 8062, 10444, 13580, 18560};
const spx_word16_t exc_gain_quant_scal3[8]={1002, 2680, 5086, 7016, 9108, 11781, 15380, 21740};
const spx_word16_t exc_gain_quant_scal1_bound[1]={14385};
const spx_word16_t exc_gain_quant_scal1[2]={11546, 17224};
#define LSP_MARGIN 16
#define LSP_DELTA1 6553
#define LSP_DELTA2 1638
#else
const float exc_gain_quant_scal3_bound[7]={0.112338, 0.236980, 0.369316, 0.492054, 0.637471, 0.828874, 1.132784};
const float exc_gain_quant_scal3[8]={0.061130, 0.163546, 0.310413, 0.428220, 0.555887, 0.719055, 0.938694, 1.326874};
const float exc_gain_quant_scal1_bound[1]={0.87798};
const float exc_gain_quant_scal1[2]={0.70469, 1.05127};
#define LSP_MARGIN .002
#define LSP_DELTA1 .2
#define LSP_DELTA2 .05
#endif
#define sqr(x) ((x)*(x))
void *nb_encoder_init(const SpeexMode *m)
{
EncState *st;
const SpeexNBMode *mode;
int i;
mode=(const SpeexNBMode *)m->mode;
#if defined(VAR_ARRAYS) || defined (USE_ALLOCA)
st = (EncState*)speex_alloc(sizeof(EncState));
st->stack = NULL;
#else
st = (EncState*)speex_alloc(sizeof(EncState)+8000*sizeof(spx_sig_t));
st->stack = ((char*)st) + sizeof(EncState);
#endif
if (!st)
return NULL;
st->mode=m;
st->frameSize = mode->frameSize;
st->windowSize = st->frameSize*3/2;
st->nbSubframes=mode->frameSize/mode->subframeSize;
st->subframeSize=mode->subframeSize;
st->lpcSize = mode->lpcSize;
st->gamma1=mode->gamma1;
st->gamma2=mode->gamma2;
st->min_pitch=mode->pitchStart;
st->max_pitch=mode->pitchEnd;
st->lag_factor=mode->lag_factor;
st->lpc_floor = mode->lpc_floor;
st->submodes=mode->submodes;
st->submodeID=st->submodeSelect=mode->defaultSubmode;
st->bounded_pitch = 1;
st->encode_submode = 1;
#ifdef EPIC_48K
st->lbr_48k=mode->lbr48k;
#endif
/* Allocating input buffer */
st->inBuf = speex_alloc((st->windowSize)*sizeof(spx_sig_t));
st->frame = st->inBuf;
/* Allocating excitation buffer */
st->excBuf = speex_alloc((mode->frameSize+mode->pitchEnd+1)*sizeof(spx_sig_t));
st->exc = st->excBuf + mode->pitchEnd + 1;
st->swBuf = speex_alloc((mode->frameSize+mode->pitchEnd+1)*sizeof(spx_sig_t));
st->sw = st->swBuf + mode->pitchEnd + 1;
st->innov = speex_alloc((st->frameSize)*sizeof(spx_sig_t));
/* Asymmetric "pseudo-Hamming" window */
{
int part1, part2;
part1=st->frameSize - (st->subframeSize>>1);
part2=(st->frameSize>>1) + (st->subframeSize>>1);
st->window = speex_alloc((st->windowSize)*sizeof(spx_word16_t));
for (i=0;i<part1;i++)
st->window[i]=(spx_word16_t)(SIG_SCALING*(.54-.46*cos(M_PI*i/part1)));
for (i=0;i<part2;i++)
st->window[part1+i]=(spx_word16_t)(SIG_SCALING*(.54+.46*cos(M_PI*i/part2)));
}
/* Create the window for autocorrelation (lag-windowing) */
st->lagWindow = speex_alloc((st->lpcSize+1)*sizeof(spx_word16_t));
for (i=0;i<st->lpcSize+1;i++)
st->lagWindow[i]=16384*exp(-.5*sqr(2*M_PI*st->lag_factor*i));
st->autocorr = speex_alloc((st->lpcSize+1)*sizeof(spx_word16_t));
st->lpc = speex_alloc((st->lpcSize+1)*sizeof(spx_coef_t));
st->interp_lpc = speex_alloc((st->lpcSize+1)*sizeof(spx_coef_t));
st->interp_qlpc = speex_alloc((st->lpcSize+1)*sizeof(spx_coef_t));
st->bw_lpc1 = speex_alloc((st->lpcSize+1)*sizeof(spx_coef_t));
st->bw_lpc2 = speex_alloc((st->lpcSize+1)*sizeof(spx_coef_t));
st->lsp = speex_alloc((st->lpcSize)*sizeof(spx_lsp_t));
st->qlsp = speex_alloc((st->lpcSize)*sizeof(spx_lsp_t));
st->old_lsp = speex_alloc((st->lpcSize)*sizeof(spx_lsp_t));
st->old_qlsp = speex_alloc((st->lpcSize)*sizeof(spx_lsp_t));
st->interp_lsp = speex_alloc((st->lpcSize)*sizeof(spx_lsp_t));
st->interp_qlsp = speex_alloc((st->lpcSize)*sizeof(spx_lsp_t));
st->first = 1;
for (i=0;i<st->lpcSize;i++)
{
st->lsp[i]=LSP_SCALING*(M_PI*((float)(i+1)))/(st->lpcSize+1);
}
st->mem_sp = speex_alloc((st->lpcSize)*sizeof(spx_mem_t));
st->mem_sw = speex_alloc((st->lpcSize)*sizeof(spx_mem_t));
st->mem_sw_whole = speex_alloc((st->lpcSize)*sizeof(spx_mem_t));
st->mem_exc = speex_alloc((st->lpcSize)*sizeof(spx_mem_t));
st->pi_gain = speex_alloc((st->nbSubframes)*sizeof(spx_word32_t));
st->pitch = speex_alloc((st->nbSubframes)*sizeof(int));
st->vbr = speex_alloc(sizeof(VBRState));
vbr_init(st->vbr);
st->vbr_quality = 8;
st->vbr_enabled = 0;
st->vad_enabled = 0;
st->dtx_enabled = 0;
st->abr_enabled = 0;
st->abr_drift = 0;
st->plc_tuning = 2;
st->complexity=2;
st->sampling_rate=8000;
st->dtx_count=0;
#ifdef ENABLE_VALGRIND
VALGRIND_MAKE_READABLE(st, (st->stack-(char*)st));
#endif
return st;
}
void nb_encoder_destroy(void *state)
{
EncState *st=(EncState *)state;
/* Free all allocated memory */
vbr_destroy(st->vbr);
/*Free state memory... should be last*/
speex_free(st);
}
int nb_encode(void *state, void *vin, SpeexBits *bits)
{
EncState *st;
int i, sub, roots;
int ol_pitch;
spx_word16_t ol_pitch_coef;
spx_word32_t ol_gain;
VARDECL(spx_sig_t *res);
VARDECL(spx_sig_t *target);
VARDECL(spx_mem_t *mem);
char *stack;
VARDECL(spx_word16_t *syn_resp);
VARDECL(spx_sig_t *real_exc);
#ifdef EPIC_48K
int pitch_half[2];
int ol_pitch_id=0;
#endif
spx_word16_t *in = vin;
st=(EncState *)state;
stack=st->stack;
/* Copy new data in input buffer */
speex_move(st->inBuf, st->inBuf+st->frameSize, (st->windowSize-st->frameSize)*sizeof(spx_sig_t));
for (i=0;i<st->frameSize;i++)
st->inBuf[st->windowSize-st->frameSize+i] = SHL32(EXTEND32(in[i]), SIG_SHIFT);
/* Move signals 1 frame towards the past */
speex_move(st->excBuf, st->excBuf+st->frameSize, (st->max_pitch+1)*sizeof(spx_sig_t));
speex_move(st->swBuf, st->swBuf+st->frameSize, (st->max_pitch+1)*sizeof(spx_sig_t));
{
VARDECL(spx_word16_t *w_sig);
ALLOC(w_sig, st->windowSize, spx_word16_t);
/* Window for analysis */
for (i=0;i<st->windowSize;i++)
w_sig[i] = EXTRACT16(SHR32(MULT16_16(EXTRACT16(SHR32(st->frame[i],SIG_SHIFT)),st->window[i]),SIG_SHIFT));
/* Compute auto-correlation */
_spx_autocorr(w_sig, st->autocorr, st->lpcSize+1, st->windowSize);
}
st->autocorr[0] = (spx_word16_t) (st->autocorr[0]*st->lpc_floor); /* Noise floor in auto-correlation domain */
/* Lag windowing: equivalent to filtering in the power-spectrum domain */
for (i=0;i<st->lpcSize+1;i++)
st->autocorr[i] = MULT16_16_Q14(st->autocorr[i],st->lagWindow[i]);
/* Levinson-Durbin */
_spx_lpc(st->lpc+1, st->autocorr, st->lpcSize);
st->lpc[0]=(spx_coef_t)LPC_SCALING;
/* LPC to LSPs (x-domain) transform */
roots=lpc_to_lsp (st->lpc, st->lpcSize, st->lsp, 15, LSP_DELTA1, stack);
/* Check if we found all the roots */
if (roots!=st->lpcSize)
{
/* Search again if we can afford it */
if (st->complexity>1)
roots = lpc_to_lsp (st->lpc, st->lpcSize, st->lsp, 11, LSP_DELTA2, stack);
if (roots!=st->lpcSize)
{
/*If we can't find all LSP's, do some damage control and use previous filter*/
for (i=0;i<st->lpcSize;i++)
{
st->lsp[i]=st->old_lsp[i];
}
}
}
/* Whole frame analysis (open-loop estimation of pitch and excitation gain) */
{
if (st->first)
for (i=0;i<st->lpcSize;i++)
st->interp_lsp[i] = st->lsp[i];
else
lsp_interpolate(st->old_lsp, st->lsp, st->interp_lsp, st->lpcSize, st->nbSubframes, st->nbSubframes<<1);
lsp_enforce_margin(st->interp_lsp, st->lpcSize, LSP_MARGIN);
/* Compute interpolated LPCs (unquantized) for whole frame*/
lsp_to_lpc(st->interp_lsp, st->interp_lpc, st->lpcSize,stack);
/*Open-loop pitch*/
if (!st->submodes[st->submodeID] || st->vbr_enabled || st->vad_enabled || SUBMODE(forced_pitch_gain) ||
SUBMODE(lbr_pitch) != -1)
{
int nol_pitch[6];
spx_word16_t nol_pitch_coef[6];
bw_lpc(st->gamma1, st->interp_lpc, st->bw_lpc1, st->lpcSize);
bw_lpc(st->gamma2, st->interp_lpc, st->bw_lpc2, st->lpcSize);
filter_mem2(st->frame, st->bw_lpc1, st->bw_lpc2, st->sw, st->frameSize, st->lpcSize, st->mem_sw_whole);
open_loop_nbest_pitch(st->sw, st->min_pitch, st->max_pitch, st->frameSize,
nol_pitch, nol_pitch_coef, 6, stack);
ol_pitch=nol_pitch[0];
ol_pitch_coef = nol_pitch_coef[0];
/*Try to remove pitch multiples*/
for (i=1;i<6;i++)
{
#ifdef FIXED_POINT
if ((nol_pitch_coef[i]>MULT16_16_Q15(nol_pitch_coef[0],27853)) &&
#else
if ((nol_pitch_coef[i]>.85*nol_pitch_coef[0]) &&
#endif
(ABS(2*nol_pitch[i]-ol_pitch)<=2 || ABS(3*nol_pitch[i]-ol_pitch)<=3 ||
ABS(4*nol_pitch[i]-ol_pitch)<=4 || ABS(5*nol_pitch[i]-ol_pitch)<=5))
{
/*ol_pitch_coef=nol_pitch_coef[i];*/
ol_pitch = nol_pitch[i];
}
}
/*if (ol_pitch>50)
ol_pitch/=2;*/
/*ol_pitch_coef = sqrt(ol_pitch_coef);*/
#ifdef EPIC_48K
if (st->lbr_48k)
{
if (ol_pitch < st->min_pitch+2)
ol_pitch = st->min_pitch+2;
if (ol_pitch > st->max_pitch-2)
ol_pitch = st->max_pitch-2;
open_loop_nbest_pitch(st->sw, ol_pitch-2, ol_pitch+2, st->frameSize>>1,
&pitch_half[0], nol_pitch_coef, 1, stack);
open_loop_nbest_pitch(st->sw+(st->frameSize>>1), pitch_half[0]-1, pitch_half[0]+2, st->frameSize>>1,
&pitch_half[1], nol_pitch_coef, 1, stack);
}
#endif
} else {
ol_pitch=0;
ol_pitch_coef=0;
}
/*Compute "real" excitation*/
fir_mem2(st->frame, st->interp_lpc, st->exc, st->frameSize, st->lpcSize, st->mem_exc);
/* Compute open-loop excitation gain */
#ifdef EPIC_48K
if (st->lbr_48k)
{
float ol1=0,ol2=0;
float ol_gain2;
ol1 = compute_rms(st->exc, st->frameSize>>1);
ol2 = compute_rms(st->exc+(st->frameSize>>1), st->frameSize>>1);
ol1 *= ol1*(st->frameSize>>1);
ol2 *= ol2*(st->frameSize>>1);
ol_gain2=ol1;
if (ol2>ol1)
ol_gain2=ol2;
ol_gain2 = sqrt(2*ol_gain2*(ol1+ol2))*1.3*(1-.5*GAIN_SCALING_1*GAIN_SCALING_1*ol_pitch_coef*ol_pitch_coef);
ol_gain=SHR(sqrt(1+ol_gain2/st->frameSize),SIG_SHIFT);
} else {
#endif
ol_gain = SHL32(EXTEND32(compute_rms(st->exc, st->frameSize)),SIG_SHIFT);
#ifdef EPIC_48K
}
#endif
}
/*VBR stuff*/
if (st->vbr && (st->vbr_enabled||st->vad_enabled))
{
float lsp_dist=0;
for (i=0;i<st->lpcSize;i++)
lsp_dist += (st->old_lsp[i] - st->lsp[i])*(st->old_lsp[i] - st->lsp[i]);
lsp_dist /= LSP_SCALING*LSP_SCALING;
if (st->abr_enabled)
{
float qual_change=0;
if (st->abr_drift2 * st->abr_drift > 0)
{
/* Only adapt if long-term and short-term drift are the same sign */
qual_change = -.00001*st->abr_drift/(1+st->abr_count);
if (qual_change>.05)
qual_change=.05;
if (qual_change<-.05)
qual_change=-.05;
}
st->vbr_quality += qual_change;
if (st->vbr_quality>10)
st->vbr_quality=10;
if (st->vbr_quality<0)
st->vbr_quality=0;
}
st->relative_quality = vbr_analysis(st->vbr, in, st->frameSize, ol_pitch, GAIN_SCALING_1*ol_pitch_coef);
/*if (delta_qual<0)*/
/* delta_qual*=.1*(3+st->vbr_quality);*/
if (st->vbr_enabled)
{
int mode;
int choice=0;
float min_diff=100;
mode = 8;
while (mode)
{
int v1;
float thresh;
v1=(int)floor(st->vbr_quality);
if (v1==10)
thresh = vbr_nb_thresh[mode][v1];
else
thresh = (st->vbr_quality-v1)*vbr_nb_thresh[mode][v1+1] + (1+v1-st->vbr_quality)*vbr_nb_thresh[mode][v1];
if (st->relative_quality > thresh &&
st->relative_quality-thresh<min_diff)
{
choice = mode;
min_diff = st->relative_quality-thresh;
}
mode--;
}
mode=choice;
if (mode==0)
{
if (st->dtx_count==0 || lsp_dist>.05 || !st->dtx_enabled || st->dtx_count>20)
{
mode=1;
st->dtx_count=1;
} else {
mode=0;
st->dtx_count++;
}
} else {
st->dtx_count=0;
}
speex_encoder_ctl(state, SPEEX_SET_MODE, &mode);
if (st->abr_enabled)
{
int bitrate;
speex_encoder_ctl(state, SPEEX_GET_BITRATE, &bitrate);
st->abr_drift+=(bitrate-st->abr_enabled);
st->abr_drift2 = .95*st->abr_drift2 + .05*(bitrate-st->abr_enabled);
st->abr_count += 1.0;
}
} else {
/*VAD only case*/
int mode;
if (st->relative_quality<2)
{
if (st->dtx_count==0 || lsp_dist>.05 || !st->dtx_enabled || st->dtx_count>20)
{
st->dtx_count=1;
mode=1;
} else {
mode=0;
st->dtx_count++;
}
} else {
st->dtx_count = 0;
mode=st->submodeSelect;
}
/*speex_encoder_ctl(state, SPEEX_SET_MODE, &mode);*/
st->submodeID=mode;
}
} else {
st->relative_quality = -1;
}
if (st->encode_submode)
{
#ifdef EPIC_48K
if (!st->lbr_48k) {
#endif
/* First, transmit a zero for narrowband */
speex_bits_pack(bits, 0, 1);
/* Transmit the sub-mode we use for this frame */
speex_bits_pack(bits, st->submodeID, NB_SUBMODE_BITS);
#ifdef EPIC_48K
}
#endif
}
/* If null mode (no transmission), just set a couple things to zero*/
if (st->submodes[st->submodeID] == NULL)
{
for (i=0;i<st->frameSize;i++)
st->exc[i]=st->sw[i]=VERY_SMALL;
for (i=0;i<st->lpcSize;i++)
st->mem_sw[i]=0;
st->first=1;
st->bounded_pitch = 1;
/* Final signal synthesis from excitation */
iir_mem2(st->exc, st->interp_qlpc, st->frame, st->frameSize, st->lpcSize, st->mem_sp);
#ifdef RESYNTH
for (i=0;i<st->frameSize;i++)
in[i]=st->frame[i];
#endif
return 0;
}
/* LSP Quantization */
if (st->first)
{
for (i=0;i<st->lpcSize;i++)
st->old_lsp[i] = st->lsp[i];
}
/*Quantize LSPs*/
#if 1 /*0 for unquantized*/
SUBMODE(lsp_quant)(st->lsp, st->qlsp, st->lpcSize, bits);
#else
for (i=0;i<st->lpcSize;i++)
st->qlsp[i]=st->lsp[i];
#endif
#ifdef EPIC_48K
if (st->lbr_48k) {
speex_bits_pack(bits, pitch_half[0]-st->min_pitch, 7);
speex_bits_pack(bits, pitch_half[1]-pitch_half[0]+1, 2);
{
int quant = (int)floor(.5+7.4*GAIN_SCALING_1*ol_pitch_coef);
if (quant>7)
quant=7;
if (quant<0)
quant=0;
ol_pitch_id=quant;
speex_bits_pack(bits, quant, 3);
ol_pitch_coef=GAIN_SCALING*0.13514*quant;
}
{
int qe = (int)(floor(.5+2.1*log(ol_gain*1.0/SIG_SCALING)))-2;
if (qe<0)
qe=0;
if (qe>15)
qe=15;
ol_gain = exp((qe+2)/2.1)*SIG_SCALING;
speex_bits_pack(bits, qe, 4);
}
} else {
#endif
/*If we use low bit-rate pitch mode, transmit open-loop pitch*/
if (SUBMODE(lbr_pitch)!=-1)
{
speex_bits_pack(bits, ol_pitch-st->min_pitch, 7);
}
if (SUBMODE(forced_pitch_gain))
{
int quant;
quant = (int)floor(.5+15*ol_pitch_coef*GAIN_SCALING_1);
if (quant>15)
quant=15;
if (quant<0)
quant=0;
speex_bits_pack(bits, quant, 4);
ol_pitch_coef=GAIN_SCALING*0.066667*quant;
}
/*Quantize and transmit open-loop excitation gain*/
#ifdef FIXED_POINT
{
int qe = scal_quant32(ol_gain, ol_gain_table, 32);
/*ol_gain = exp(qe/3.5)*SIG_SCALING;*/
ol_gain = MULT16_32_Q15(28406,ol_gain_table[qe]);
speex_bits_pack(bits, qe, 5);
}
#else
{
int qe = (int)(floor(.5+3.5*log(ol_gain*1.0/SIG_SCALING)));
if (qe<0)
qe=0;
if (qe>31)
qe=31;
ol_gain = exp(qe/3.5)*SIG_SCALING;
speex_bits_pack(bits, qe, 5);
}
#endif
#ifdef EPIC_48K
}
#endif
/* Special case for first frame */
if (st->first)
{
for (i=0;i<st->lpcSize;i++)
st->old_qlsp[i] = st->qlsp[i];
}
/* Filter response */
ALLOC(res, st->subframeSize, spx_sig_t);
/* Target signal */
ALLOC(target, st->subframeSize, spx_sig_t);
ALLOC(syn_resp, st->subframeSize, spx_word16_t);
ALLOC(real_exc, st->subframeSize, spx_sig_t);
ALLOC(mem, st->lpcSize, spx_mem_t);
/* Loop on sub-frames */
for (sub=0;sub<st->nbSubframes;sub++)
{
int offset;
spx_sig_t *sp, *sw, *exc;
int pitch;
int response_bound = st->subframeSize;
#ifdef EPIC_48K
if (st->lbr_48k)
{
if (sub*2 < st->nbSubframes)
ol_pitch = pitch_half[0];
else
ol_pitch = pitch_half[1];
}
#endif
/* Offset relative to start of frame */
offset = st->subframeSize*sub;
/* Original signal */
sp=st->frame+offset;
/* Excitation */
exc=st->exc+offset;
/* Weighted signal */
sw=st->sw+offset;
/* LSP interpolation (quantized and unquantized) */
lsp_interpolate(st->old_lsp, st->lsp, st->interp_lsp, st->lpcSize, sub, st->nbSubframes);
lsp_interpolate(st->old_qlsp, st->qlsp, st->interp_qlsp, st->lpcSize, sub, st->nbSubframes);
/* Make sure the filters are stable */
lsp_enforce_margin(st->interp_lsp, st->lpcSize, LSP_MARGIN);
lsp_enforce_margin(st->interp_qlsp, st->lpcSize, LSP_MARGIN);
/* Compute interpolated LPCs (quantized and unquantized) */
lsp_to_lpc(st->interp_lsp, st->interp_lpc, st->lpcSize,stack);
lsp_to_lpc(st->interp_qlsp, st->interp_qlpc, st->lpcSize, stack);
/* Compute analysis filter gain at w=pi (for use in SB-CELP) */
{
spx_word32_t pi_g=st->interp_qlpc[0];
for (i=1;i<=st->lpcSize;i+=2)
{
/*pi_g += -st->interp_qlpc[i] + st->interp_qlpc[i+1];*/
pi_g = ADD32(pi_g, SUB32(st->interp_qlpc[i+1],st->interp_qlpc[i]));
}
st->pi_gain[sub] = pi_g;
}
/* Compute bandwidth-expanded (unquantized) LPCs for perceptual weighting */
bw_lpc(st->gamma1, st->interp_lpc, st->bw_lpc1, st->lpcSize);
if (st->gamma2>=0)
bw_lpc(st->gamma2, st->interp_lpc, st->bw_lpc2, st->lpcSize);
else
{
st->bw_lpc2[0]=1;
for (i=1;i<=st->lpcSize;i++)
st->bw_lpc2[i]=0;
}
for (i=0;i<st->subframeSize;i++)
real_exc[i] = exc[i];
if (st->complexity==0)
response_bound >>= 1;
compute_impulse_response(st->interp_qlpc, st->bw_lpc1, st->bw_lpc2, syn_resp, response_bound, st->lpcSize, stack);
for (i=response_bound;i<st->subframeSize;i++)
syn_resp[i]=VERY_SMALL;
/* Reset excitation */
for (i=0;i<st->subframeSize;i++)
exc[i]=VERY_SMALL;
/* Compute zero response of A(z/g1) / ( A(z/g2) * A(z) ) */
for (i=0;i<st->lpcSize;i++)
mem[i]=st->mem_sp[i];
#ifdef SHORTCUTS2
iir_mem2(exc, st->interp_qlpc, exc, response_bound, st->lpcSize, mem);
for (i=0;i<st->lpcSize;i++)
mem[i]=st->mem_sw[i];
filter_mem2(exc, st->bw_lpc1, st->bw_lpc2, res, response_bound, st->lpcSize, mem);
for (i=response_bound;i<st->subframeSize;i++)
res[i]=0;
#else
iir_mem2(exc, st->interp_qlpc, exc, st->subframeSize, st->lpcSize, mem);
for (i=0;i<st->lpcSize;i++)
mem[i]=st->mem_sw[i];
filter_mem2(exc, st->bw_lpc1, st->bw_lpc2, res, st->subframeSize, st->lpcSize, mem);
#endif
/* Compute weighted signal */
for (i=0;i<st->lpcSize;i++)
mem[i]=st->mem_sw[i];
filter_mem2(sp, st->bw_lpc1, st->bw_lpc2, sw, st->subframeSize, st->lpcSize, mem);
if (st->complexity==0)
for (i=0;i<st->lpcSize;i++)
st->mem_sw[i]=mem[i];
/* Compute target signal */
for (i=0;i<st->subframeSize;i++)
target[i]=sw[i]-res[i];
for (i=0;i<st->subframeSize;i++)
exc[i]=0;
/* If we have a long-term predictor (otherwise, something's wrong) */
if (SUBMODE(ltp_quant))
{
int pit_min, pit_max;
/* Long-term prediction */
if (SUBMODE(lbr_pitch) != -1)
{
/* Low bit-rate pitch handling */
int margin;
margin = SUBMODE(lbr_pitch);
if (margin)
{
if (ol_pitch < st->min_pitch+margin-1)
ol_pitch=st->min_pitch+margin-1;
if (ol_pitch > st->max_pitch-margin)
ol_pitch=st->max_pitch-margin;
pit_min = ol_pitch-margin+1;
pit_max = ol_pitch+margin;
} else {
pit_min=pit_max=ol_pitch;
}
} else {
pit_min = st->min_pitch;
pit_max = st->max_pitch;
}
/* Force pitch to use only the current frame if needed */
if (st->bounded_pitch && pit_max>offset)
pit_max=offset;
#ifdef EPIC_48K
if (st->lbr_48k)
{
pitch = SUBMODE(ltp_quant)(target, sw, st->interp_qlpc, st->bw_lpc1, st->bw_lpc2,
exc, SUBMODE(ltp_params), pit_min, pit_max, ol_pitch_coef,
st->lpcSize, st->subframeSize, bits, stack,
exc, syn_resp, st->complexity, ol_pitch_id, st->plc_tuning);
} else {
#endif
/* Perform pitch search */
pitch = SUBMODE(ltp_quant)(target, sw, st->interp_qlpc, st->bw_lpc1, st->bw_lpc2,
exc, SUBMODE(ltp_params), pit_min, pit_max, ol_pitch_coef,
st->lpcSize, st->subframeSize, bits, stack,
exc, syn_resp, st->complexity, 0, st->plc_tuning);
#ifdef EPIC_48K
}
#endif
st->pitch[sub]=pitch;
} else {
speex_error ("No pitch prediction, what's wrong");
}
/* Quantization of innovation */
{
spx_sig_t *innov;
spx_word32_t ener=0;
spx_word16_t fine_gain;
innov = st->innov+sub*st->subframeSize;
for (i=0;i<st->subframeSize;i++)
innov[i]=0;
for (i=0;i<st->subframeSize;i++)
real_exc[i] = SUB32(real_exc[i], exc[i]);
ener = SHL32(EXTEND32(compute_rms(real_exc, st->subframeSize)),SIG_SHIFT);
/*FIXME: Should use DIV32_16 and make sure result fits in 16 bits */
#ifdef FIXED_POINT
{
spx_word32_t f = DIV32(ener,PSHR32(ol_gain,SIG_SHIFT));
if (f<32768)
fine_gain = f;
else
fine_gain = 32767;
}
#else
fine_gain = DIV32_16(ener,PSHR32(ol_gain,SIG_SHIFT));
#endif
/* Calculate gain correction for the sub-frame (if any) */
if (SUBMODE(have_subframe_gain))
{
int qe;
if (SUBMODE(have_subframe_gain)==3)
{
qe = scal_quant(fine_gain, exc_gain_quant_scal3_bound, 8);
speex_bits_pack(bits, qe, 3);
ener=MULT16_32_Q14(exc_gain_quant_scal3[qe],ol_gain);
} else {
qe = scal_quant(fine_gain, exc_gain_quant_scal1_bound, 2);
speex_bits_pack(bits, qe, 1);
ener=MULT16_32_Q14(exc_gain_quant_scal1[qe],ol_gain);
}
} else {
ener=ol_gain;
}
/*printf ("%f %f\n", ener, ol_gain);*/
/* Normalize innovation */
signal_div(target, target, ener, st->subframeSize);
/* Quantize innovation */
if (SUBMODE(innovation_quant))
{
/* Codebook search */
SUBMODE(innovation_quant)(target, st->interp_qlpc, st->bw_lpc1, st->bw_lpc2,
SUBMODE(innovation_params), st->lpcSize, st->subframeSize,
innov, syn_resp, bits, stack, st->complexity, SUBMODE(double_codebook));
/* De-normalize innovation and update excitation */
signal_mul(innov, innov, ener, st->subframeSize);
for (i=0;i<st->subframeSize;i++)
exc[i] = ADD32(exc[i],innov[i]);
} else {
speex_error("No fixed codebook");
}
/* In some (rare) modes, we do a second search (more bits) to reduce noise even more */
if (SUBMODE(double_codebook)) {
char *tmp_stack=stack;
VARDECL(spx_sig_t *innov2);
ALLOC(innov2, st->subframeSize, spx_sig_t);
for (i=0;i<st->subframeSize;i++)
innov2[i]=0;
for (i=0;i<st->subframeSize;i++)
target[i]*=2.2;
SUBMODE(innovation_quant)(target, st->interp_qlpc, st->bw_lpc1, st->bw_lpc2,
SUBMODE(innovation_params), st->lpcSize, st->subframeSize,
innov2, syn_resp, bits, stack, st->complexity, 0);
signal_mul(innov2, innov2, (spx_word32_t) (ener*(1/2.2)), st->subframeSize);
for (i=0;i<st->subframeSize;i++)
exc[i] = ADD32(exc[i],innov2[i]);
stack = tmp_stack;
}
}
/* Final signal synthesis from excitation */
iir_mem2(exc, st->interp_qlpc, sp, st->subframeSize, st->lpcSize, st->mem_sp);
/* Compute weighted signal again, from synthesized speech (not sure it's the right thing) */
if (st->complexity!=0)
filter_mem2(sp, st->bw_lpc1, st->bw_lpc2, sw, st->subframeSize, st->lpcSize, st->mem_sw);
}
/* Store the LSPs for interpolation in the next frame */
if (st->submodeID>=1)
{
for (i=0;i<st->lpcSize;i++)
st->old_lsp[i] = st->lsp[i];
for (i=0;i<st->lpcSize;i++)
st->old_qlsp[i] = st->qlsp[i];
}
if (st->submodeID==1)
{
if (st->dtx_count)
speex_bits_pack(bits, 15, 4);
else
speex_bits_pack(bits, 0, 4);
}
/* The next frame will not be the first (Duh!) */
st->first = 0;
#ifdef RESYNTH
/* Replace input by synthesized speech */
for (i=0;i<st->frameSize;i++)
{
spx_word32_t sig = PSHR32(st->frame[i],SIG_SHIFT);
if (sig>32767)
sig = 32767;
if (sig<-32767)
sig = -32767;
in[i]=sig;
}
#endif
if (SUBMODE(innovation_quant) == noise_codebook_quant || st->submodeID==0)
st->bounded_pitch = 1;
else
st->bounded_pitch = 0;
return 1;
}
void *nb_decoder_init(const SpeexMode *m)
{
DecState *st;
const SpeexNBMode *mode;
int i;
mode=(const SpeexNBMode*)m->mode;
#if defined(VAR_ARRAYS) || defined (USE_ALLOCA)
st = (DecState *)speex_alloc(sizeof(DecState));
st->stack = NULL;
#else
st = (DecState *)speex_alloc(sizeof(DecState)+4000*sizeof(spx_sig_t));
st->stack = ((char*)st) + sizeof(DecState);
#endif
if (!st)
return NULL;
st->mode=m;
st->encode_submode = 1;
#ifdef EPIC_48K
st->lbr_48k=mode->lbr48k;
#endif
st->first=1;
/* Codec parameters, should eventually have several "modes"*/
st->frameSize = mode->frameSize;
st->nbSubframes=mode->frameSize/mode->subframeSize;
st->subframeSize=mode->subframeSize;
st->lpcSize = mode->lpcSize;
st->min_pitch=mode->pitchStart;
st->max_pitch=mode->pitchEnd;
st->submodes=mode->submodes;
st->submodeID=mode->defaultSubmode;
st->lpc_enh_enabled=0;
st->inBuf = speex_alloc((st->frameSize)*sizeof(spx_sig_t));
st->frame = st->inBuf;
st->excBuf = speex_alloc((st->frameSize + st->max_pitch + 1)*sizeof(spx_sig_t));
st->exc = st->excBuf + st->max_pitch + 1;
for (i=0;i<st->frameSize;i++)
st->inBuf[i]=0;
for (i=0;i<st->frameSize + st->max_pitch + 1;i++)
st->excBuf[i]=0;
st->innov = speex_alloc((st->frameSize)*sizeof(spx_sig_t));
st->interp_qlpc = speex_alloc((st->lpcSize+1)*sizeof(spx_coef_t));
st->qlsp = speex_alloc((st->lpcSize)*sizeof(spx_lsp_t));
st->old_qlsp = speex_alloc((st->lpcSize)*sizeof(spx_lsp_t));
st->interp_qlsp = speex_alloc((st->lpcSize)*sizeof(spx_lsp_t));
st->mem_sp = speex_alloc((5*st->lpcSize)*sizeof(spx_mem_t));
st->comb_mem = speex_alloc(sizeof(CombFilterMem));
comb_filter_mem_init (st->comb_mem);
st->pi_gain = speex_alloc((st->nbSubframes)*sizeof(spx_word32_t));
st->last_pitch = 40;
st->count_lost=0;
st->pitch_gain_buf[0] = st->pitch_gain_buf[1] = st->pitch_gain_buf[2] = 0;
st->pitch_gain_buf_idx = 0;
st->sampling_rate=8000;
st->last_ol_gain = 0;
st->user_callback.func = &speex_default_user_handler;
st->user_callback.data = NULL;
for (i=0;i<16;i++)
st->speex_callbacks[i].func = NULL;
st->voc_m1=st->voc_m2=st->voc_mean=0;
st->voc_offset=0;
st->dtx_enabled=0;
#ifdef ENABLE_VALGRIND
VALGRIND_MAKE_READABLE(st, (st->stack-(char*)st));
#endif
return st;
}
void nb_decoder_destroy(void *state)
{
//DecState *st;
//st=(DecState*)state;
speex_free(state);
}
#define median3(a, b, c) ((a) < (b) ? ((b) < (c) ? (b) : ((a) < (c) ? (c) : (a))) : ((c) < (b) ? (b) : ((c) < (a) ? (c) : (a))))
static void nb_decode_lost(DecState *st, spx_word16_t *out, char *stack)
{
int i, sub;
VARDECL(spx_coef_t *awk1);
VARDECL(spx_coef_t *awk2);
VARDECL(spx_coef_t *awk3);
float pitch_gain, fact;
spx_word16_t gain_med;
fact = exp(-.04*st->count_lost*st->count_lost);
gain_med = median3(st->pitch_gain_buf[0], st->pitch_gain_buf[1], st->pitch_gain_buf[2]);
if (gain_med < st->last_pitch_gain)
st->last_pitch_gain = gain_med;
pitch_gain = GAIN_SCALING_1*st->last_pitch_gain;
if (pitch_gain>.95)
pitch_gain=.95;
pitch_gain = fact*pitch_gain + VERY_SMALL;
/* Shift all buffers by one frame */
/*speex_move(st->inBuf, st->inBuf+st->frameSize, (st->bufSize-st->frameSize)*sizeof(spx_sig_t));*/
speex_move(st->excBuf, st->excBuf+st->frameSize, (st->max_pitch + 1)*sizeof(spx_sig_t));
ALLOC(awk1, (st->lpcSize+1), spx_coef_t);
ALLOC(awk2, (st->lpcSize+1), spx_coef_t);
ALLOC(awk3, (st->lpcSize+1), spx_coef_t);
for (sub=0;sub<st->nbSubframes;sub++)
{
int offset;
spx_sig_t *sp, *exc;
/* Offset relative to start of frame */
offset = st->subframeSize*sub;
/* Original signal */
sp=st->frame+offset;
/* Excitation */
exc=st->exc+offset;
/* Excitation after post-filter*/
/* Calculate perceptually enhanced LPC filter */
if (st->lpc_enh_enabled)
{
spx_word16_t k1,k2,k3;
if (st->submodes[st->submodeID] != NULL)
{
k1=SUBMODE(lpc_enh_k1);
k2=SUBMODE(lpc_enh_k2);
k3=SUBMODE(lpc_enh_k3);
} else {
k1=k2=.7*GAMMA_SCALING;
k3=.0;
}
bw_lpc(k1, st->interp_qlpc, awk1, st->lpcSize);
bw_lpc(k2, st->interp_qlpc, awk2, st->lpcSize);
bw_lpc(k3, st->interp_qlpc, awk3, st->lpcSize);
}
/* Make up a plausible excitation */
/* FIXME: THIS CAN BE IMPROVED */
/*if (pitch_gain>.95)
pitch_gain=.95;*/
{
float innov_gain=0;
innov_gain = compute_rms(st->innov, st->frameSize);
for (i=0;i<st->subframeSize;i++)
{
#if 0
exc[i] = pitch_gain * exc[i - st->last_pitch] + fact*sqrt(1-pitch_gain)*st->innov[i+offset];
/*Just so it give the same lost packets as with if 0*/
/*rand();*/
#else
/*exc[i]=pitch_gain*exc[i-st->last_pitch] + fact*st->innov[i+offset];*/
exc[i]=pitch_gain*(exc[i-st->last_pitch]+VERY_SMALL) +
fact*sqrt(1-pitch_gain)*speex_rand(innov_gain);
#endif
}
}
for (i=0;i<st->subframeSize;i++)
sp[i]=exc[i];
/* Signal synthesis */
if (st->lpc_enh_enabled)
{
filter_mem2(sp, awk2, awk1, sp, st->subframeSize, st->lpcSize,
st->mem_sp+st->lpcSize);
filter_mem2(sp, awk3, st->interp_qlpc, sp, st->subframeSize, st->lpcSize,
st->mem_sp);
} else {
for (i=0;i<st->lpcSize;i++)
st->mem_sp[st->lpcSize+i] = 0;
iir_mem2(sp, st->interp_qlpc, sp, st->subframeSize, st->lpcSize,
st->mem_sp);
}
}
for (i=0;i<st->frameSize;i++)
{
spx_word32_t sig = PSHR32(st->frame[i],SIG_SHIFT);
if (sig>32767)
sig = 32767;
if (sig<-32767)
sig = -32767;
out[i]=sig;
}
st->first = 0;
st->count_lost++;
st->pitch_gain_buf[st->pitch_gain_buf_idx++] = GAIN_SCALING*pitch_gain;
if (st->pitch_gain_buf_idx > 2) /* rollover */
st->pitch_gain_buf_idx = 0;
}
int nb_decode(void *state, SpeexBits *bits, void *vout)
{
DecState *st;
int i, sub;
int pitch;
spx_word16_t pitch_gain[3];
spx_word32_t ol_gain=0;
int ol_pitch=0;
spx_word16_t ol_pitch_coef=0;
int best_pitch=40;
spx_word16_t best_pitch_gain=0;
int wideband;
int m;
char *stack;
VARDECL(spx_coef_t *awk1);
VARDECL(spx_coef_t *awk2);
VARDECL(spx_coef_t *awk3);
spx_word16_t pitch_average=0;
#ifdef EPIC_48K
int pitch_half[2];
int ol_pitch_id=0;
#endif
spx_word16_t *out = vout;
st=(DecState*)state;
stack=st->stack;
if (st->encode_submode)
{
#ifdef EPIC_48K
if (!st->lbr_48k) {
#endif
/* Check if we're in DTX mode*/
if (!bits && st->dtx_enabled)
{
st->submodeID=0;
} else
{
/* If bits is NULL, consider the packet to be lost (what could we do anyway) */
if (!bits)
{
nb_decode_lost(st, out, stack);
return 0;
}
/* Search for next narrowband block (handle requests, skip wideband blocks) */
do {
if (speex_bits_remaining(bits)<5)
return -1;
wideband = speex_bits_unpack_unsigned(bits, 1);
if (wideband) /* Skip wideband block (for compatibility) */
{
int submode;
int advance;
advance = submode = speex_bits_unpack_unsigned(bits, SB_SUBMODE_BITS);
speex_mode_query(&speex_wb_mode, SPEEX_SUBMODE_BITS_PER_FRAME, &advance);
if (advance < 0)
{
speex_warning ("Invalid wideband mode encountered. Corrupted stream?");
return -2;
}
advance -= (SB_SUBMODE_BITS+1);
speex_bits_advance(bits, advance);
if (speex_bits_remaining(bits)<5)
return -1;
wideband = speex_bits_unpack_unsigned(bits, 1);
if (wideband)
{
advance = submode = speex_bits_unpack_unsigned(bits, SB_SUBMODE_BITS);
speex_mode_query(&speex_wb_mode, SPEEX_SUBMODE_BITS_PER_FRAME, &advance);
if (advance < 0)
{
speex_warning ("Invalid wideband mode encountered: corrupted stream?");
return -2;
}
advance -= (SB_SUBMODE_BITS+1);
speex_bits_advance(bits, advance);
wideband = speex_bits_unpack_unsigned(bits, 1);
if (wideband)
{
speex_warning ("More than two wideband layers found: corrupted stream?");
return -2;
}
}
}
if (speex_bits_remaining(bits)<4)
return -1;
/* FIXME: Check for overflow */
m = speex_bits_unpack_unsigned(bits, 4);
if (m==15) /* We found a terminator */
{
return -1;
} else if (m==14) /* Speex in-band request */
{
int ret = speex_inband_handler(bits, st->speex_callbacks, state);
if (ret)
return ret;
} else if (m==13) /* User in-band request */
{
int ret = st->user_callback.func(bits, state, st->user_callback.data);
if (ret)
return ret;
} else if (m>8) /* Invalid mode */
{
speex_warning("Invalid mode encountered: corrupted stream?");
return -2;
}
} while (m>8);
/* Get the sub-mode that was used */
st->submodeID = m;
}
#ifdef EPIC_48K
}
#endif
}
/* Shift all buffers by one frame */
speex_move(st->excBuf, st->excBuf+st->frameSize, (st->max_pitch + 1)*sizeof(spx_sig_t));
/* If null mode (no transmission), just set a couple things to zero*/
if (st->submodes[st->submodeID] == NULL)
{
VARDECL(spx_coef_t *lpc);
ALLOC(lpc, 11, spx_coef_t);
bw_lpc(GAMMA_SCALING*.93, st->interp_qlpc, lpc, 10);
{
float innov_gain=0;
float pgain=GAIN_SCALING_1*st->last_pitch_gain;
if (pgain>.6)
pgain=.6;
innov_gain = compute_rms(st->innov, st->frameSize);
for (i=0;i<st->frameSize;i++)
st->exc[i]=VERY_SMALL;
speex_rand_vec(innov_gain, st->exc, st->frameSize);
}
st->first=1;
/* Final signal synthesis from excitation */
iir_mem2(st->exc, lpc, st->frame, st->frameSize, st->lpcSize, st->mem_sp);
for (i=0;i<st->frameSize;i++)
{
spx_word32_t sig = PSHR32(st->frame[i],SIG_SHIFT);
if (sig>32767)
sig = 32767;
if (sig<-32767)
sig = -32767;
out[i]=sig;
}
st->count_lost=0;
return 0;
}
/* Unquantize LSPs */
SUBMODE(lsp_unquant)(st->qlsp, st->lpcSize, bits);
/*Damp memory if a frame was lost and the LSP changed too much*/
if (st->count_lost)
{
float lsp_dist=0, fact;
for (i=0;i<st->lpcSize;i++)
lsp_dist += fabs(st->old_qlsp[i] - st->qlsp[i]);
lsp_dist /= LSP_SCALING;
fact = .6*exp(-.2*lsp_dist);
for (i=0;i<2*st->lpcSize;i++)
st->mem_sp[i] = (spx_mem_t)(st->mem_sp[i]*fact);
}
/* Handle first frame and lost-packet case */
if (st->first || st->count_lost)
{
for (i=0;i<st->lpcSize;i++)
st->old_qlsp[i] = st->qlsp[i];
}
#ifdef EPIC_48K
if (st->lbr_48k) {
pitch_half[0] = st->min_pitch+speex_bits_unpack_unsigned(bits, 7);
pitch_half[1] = pitch_half[0]+speex_bits_unpack_unsigned(bits, 2)-1;
ol_pitch_id = speex_bits_unpack_unsigned(bits, 3);
ol_pitch_coef=GAIN_SCALING*0.13514*ol_pitch_id;
{
int qe;
qe = speex_bits_unpack_unsigned(bits, 4);
ol_gain = SIG_SCALING*exp((qe+2)/2.1),SIG_SHIFT;
}
} else {
#endif
/* Get open-loop pitch estimation for low bit-rate pitch coding */
if (SUBMODE(lbr_pitch)!=-1)
{
ol_pitch = st->min_pitch+speex_bits_unpack_unsigned(bits, 7);
}
if (SUBMODE(forced_pitch_gain))
{
int quant;
quant = speex_bits_unpack_unsigned(bits, 4);
ol_pitch_coef=GAIN_SCALING*0.066667*quant;
}
/* Get global excitation gain */
{
int qe;
qe = speex_bits_unpack_unsigned(bits, 5);
#ifdef FIXED_POINT
ol_gain = MULT16_32_Q15(28406,ol_gain_table[qe]);
#else
ol_gain = SIG_SCALING*exp(qe/3.5);
#endif
}
#ifdef EPIC_48K
}
#endif
ALLOC(awk1, st->lpcSize+1, spx_coef_t);
ALLOC(awk2, st->lpcSize+1, spx_coef_t);
ALLOC(awk3, st->lpcSize+1, spx_coef_t);
if (st->submodeID==1)
{
int extra;
extra = speex_bits_unpack_unsigned(bits, 4);
if (extra==15)
st->dtx_enabled=1;
else
st->dtx_enabled=0;
}
if (st->submodeID>1)
st->dtx_enabled=0;
/*Loop on subframes */
for (sub=0;sub<st->nbSubframes;sub++)
{
int offset;
spx_sig_t *sp, *exc;
spx_word16_t tmp;
#ifdef EPIC_48K
if (st->lbr_48k)
{
if (sub*2 < st->nbSubframes)
ol_pitch = pitch_half[0];
else
ol_pitch = pitch_half[1];
}
#endif
/* Offset relative to start of frame */
offset = st->subframeSize*sub;
/* Original signal */
sp=st->frame+offset;
/* Excitation */
exc=st->exc+offset;
/* Excitation after post-filter*/
/* LSP interpolation (quantized and unquantized) */
lsp_interpolate(st->old_qlsp, st->qlsp, st->interp_qlsp, st->lpcSize, sub, st->nbSubframes);
/* Make sure the LSP's are stable */
lsp_enforce_margin(st->interp_qlsp, st->lpcSize, LSP_MARGIN);
/* Compute interpolated LPCs (unquantized) */
lsp_to_lpc(st->interp_qlsp, st->interp_qlpc, st->lpcSize, stack);
/* Compute enhanced synthesis filter */
if (st->lpc_enh_enabled)
{
bw_lpc(SUBMODE(lpc_enh_k1), st->interp_qlpc, awk1, st->lpcSize);
bw_lpc(SUBMODE(lpc_enh_k2), st->interp_qlpc, awk2, st->lpcSize);
bw_lpc(SUBMODE(lpc_enh_k3), st->interp_qlpc, awk3, st->lpcSize);
}
/* Compute analysis filter at w=pi */
{
spx_word32_t pi_g=st->interp_qlpc[0];
for (i=1;i<=st->lpcSize;i+=2)
{
/*pi_g += -st->interp_qlpc[i] + st->interp_qlpc[i+1];*/
pi_g = ADD32(pi_g, SUB32(st->interp_qlpc[i+1],st->interp_qlpc[i]));
}
st->pi_gain[sub] = pi_g;
}
/* Reset excitation */
for (i=0;i<st->subframeSize;i++)
exc[i]=0;
/*Adaptive codebook contribution*/
if (SUBMODE(ltp_unquant))
{
int pit_min, pit_max;
/* Handle pitch constraints if any */
if (SUBMODE(lbr_pitch) != -1)
{
int margin;
margin = SUBMODE(lbr_pitch);
if (margin)
{
/* GT - need optimization?
if (ol_pitch < st->min_pitch+margin-1)
ol_pitch=st->min_pitch+margin-1;
if (ol_pitch > st->max_pitch-margin)
ol_pitch=st->max_pitch-margin;
pit_min = ol_pitch-margin+1;
pit_max = ol_pitch+margin;
*/
pit_min = ol_pitch-margin+1;
if (pit_min < st->min_pitch)
pit_min = st->min_pitch;
pit_max = ol_pitch+margin;
if (pit_max > st->max_pitch)
pit_max = st->max_pitch;
} else {
pit_min = pit_max = ol_pitch;
}
} else {
pit_min = st->min_pitch;
pit_max = st->max_pitch;
}
#ifdef EPIC_48K
if (st->lbr_48k)
{
SUBMODE(ltp_unquant)(exc, pit_min, pit_max, ol_pitch_coef, SUBMODE(ltp_params),
st->subframeSize, &pitch, &pitch_gain[0], bits, stack,
st->count_lost, offset, st->last_pitch_gain, ol_pitch_id);
} else {
#endif
SUBMODE(ltp_unquant)(exc, pit_min, pit_max, ol_pitch_coef, SUBMODE(ltp_params),
st->subframeSize, &pitch, &pitch_gain[0], bits, stack,
st->count_lost, offset, st->last_pitch_gain, 0);
#ifdef EPIC_48K
}
#endif
/* If we had lost frames, check energy of last received frame */
if (st->count_lost && ol_gain < st->last_ol_gain)
{
float fact = (float)ol_gain/(st->last_ol_gain+1);
for (i=0;i<st->subframeSize;i++)
exc[i]*=fact;
}
tmp = gain_3tap_to_1tap(pitch_gain);
pitch_average += tmp;
if (tmp>best_pitch_gain)
{
best_pitch = pitch;
best_pitch_gain = tmp;
}
} else {
speex_error("No pitch prediction, what's wrong");
}
/* Unquantize the innovation */
{
int q_energy;
spx_word32_t ener;
spx_sig_t *innov;
innov = st->innov+sub*st->subframeSize;
for (i=0;i<st->subframeSize;i++)
innov[i]=0;
/* Decode sub-frame gain correction */
if (SUBMODE(have_subframe_gain)==3)
{
q_energy = speex_bits_unpack_unsigned(bits, 3);
ener = MULT16_32_Q14(exc_gain_quant_scal3[q_energy],ol_gain);
} else if (SUBMODE(have_subframe_gain)==1)
{
q_energy = speex_bits_unpack_unsigned(bits, 1);
ener = MULT16_32_Q14(exc_gain_quant_scal1[q_energy],ol_gain);
} else {
ener = ol_gain;
}
if (SUBMODE(innovation_unquant))
{
/*Fixed codebook contribution*/
SUBMODE(innovation_unquant)(innov, SUBMODE(innovation_params), st->subframeSize, bits, stack);
} else {
speex_error("No fixed codebook");
}
/* De-normalize innovation and update excitation */
#ifdef FIXED_POINT
signal_mul(innov, innov, ener, st->subframeSize);
#else
signal_mul(innov, innov, ener, st->subframeSize);
#endif
/*Vocoder mode*/
if (st->submodeID==1)
{
float g=ol_pitch_coef*GAIN_SCALING_1;
for (i=0;i<st->subframeSize;i++)
exc[i]=0;
while (st->voc_offset<st->subframeSize)
{
if (st->voc_offset>=0)
exc[st->voc_offset]=SIG_SCALING*sqrt(1.0*ol_pitch);
st->voc_offset+=ol_pitch;
}
st->voc_offset -= st->subframeSize;
g=.5+2*(g-.6);
if (g<0)
g=0;
if (g>1)
g=1;
for (i=0;i<st->subframeSize;i++)
{
float exci=exc[i];
exc[i]=.8*g*exc[i]*ol_gain/SIG_SCALING + .6*g*st->voc_m1*ol_gain/SIG_SCALING + .5*g*innov[i] - .5*g*st->voc_m2 + (1-g)*innov[i];
st->voc_m1 = exci;
st->voc_m2=innov[i];
st->voc_mean = .95*st->voc_mean + .05*exc[i];
exc[i]-=st->voc_mean;
}
} else {
for (i=0;i<st->subframeSize;i++)
exc[i]=ADD32(exc[i],innov[i]);
/*print_vec(exc, 40, "innov");*/
}
/* Decode second codebook (only for some modes) */
if (SUBMODE(double_codebook))
{
char *tmp_stack=stack;
VARDECL(spx_sig_t *innov2);
ALLOC(innov2, st->subframeSize, spx_sig_t);
for (i=0;i<st->subframeSize;i++)
innov2[i]=0;
SUBMODE(innovation_unquant)(innov2, SUBMODE(innovation_params), st->subframeSize, bits, stack);
signal_mul(innov2, innov2, (spx_word32_t) (ener*(1/2.2)), st->subframeSize);
for (i=0;i<st->subframeSize;i++)
exc[i] = ADD32(exc[i],innov2[i]);
stack = tmp_stack;
}
}
for (i=0;i<st->subframeSize;i++)
sp[i]=exc[i];
/* Signal synthesis */
if (st->lpc_enh_enabled && SUBMODE(comb_gain)>0)
comb_filter(exc, sp, st->interp_qlpc, st->lpcSize, st->subframeSize,
pitch, pitch_gain, SUBMODE(comb_gain), st->comb_mem);
if (st->lpc_enh_enabled)
{
/* Use enhanced LPC filter */
filter_mem2(sp, awk2, awk1, sp, st->subframeSize, st->lpcSize,
st->mem_sp+st->lpcSize);
filter_mem2(sp, awk3, st->interp_qlpc, sp, st->subframeSize, st->lpcSize,
st->mem_sp);
} else {
/* Use regular filter */
for (i=0;i<st->lpcSize;i++)
st->mem_sp[st->lpcSize+i] = 0;
iir_mem2(sp, st->interp_qlpc, sp, st->subframeSize, st->lpcSize,
st->mem_sp);
}
}
/*Copy output signal*/
for (i=0;i<st->frameSize;i++)
{
spx_word32_t sig = PSHR32(st->frame[i],SIG_SHIFT);
if (sig>32767)
sig = 32767;
if (sig<-32767)
sig = -32767;
out[i]=sig;
}
/*for (i=0;i<st->frameSize;i++)
printf ("%d\n", (int)st->frame[i]);*/
/* Store the LSPs for interpolation in the next frame */
for (i=0;i<st->lpcSize;i++)
st->old_qlsp[i] = st->qlsp[i];
/* The next frame will not be the first (Duh!) */
st->first = 0;
st->count_lost=0;
st->last_pitch = best_pitch;
#ifdef FIXED_POINT
st->last_pitch_gain = PSHR16(pitch_average,2);
#else
st->last_pitch_gain = .25*pitch_average;
#endif
st->pitch_gain_buf[st->pitch_gain_buf_idx++] = st->last_pitch_gain;
if (st->pitch_gain_buf_idx > 2) /* rollover */
st->pitch_gain_buf_idx = 0;
st->last_ol_gain = ol_gain;
return 0;
}
int nb_encoder_ctl(void *state, int request, void *ptr)
{
EncState *st;
st=(EncState*)state;
switch(request)
{
case SPEEX_GET_FRAME_SIZE:
(*(int*)ptr) = st->frameSize;
break;
case SPEEX_SET_LOW_MODE:
case SPEEX_SET_MODE:
st->submodeSelect = st->submodeID = (*(int*)ptr);
break;
case SPEEX_GET_LOW_MODE:
case SPEEX_GET_MODE:
(*(int*)ptr) = st->submodeID;
break;
case SPEEX_SET_VBR:
st->vbr_enabled = (*(int*)ptr);
break;
case SPEEX_GET_VBR:
(*(int*)ptr) = st->vbr_enabled;
break;
case SPEEX_SET_VAD:
st->vad_enabled = (*(int*)ptr);
break;
case SPEEX_GET_VAD:
(*(int*)ptr) = st->vad_enabled;
break;
case SPEEX_SET_DTX:
st->dtx_enabled = (*(int*)ptr);
break;
case SPEEX_GET_DTX:
(*(int*)ptr) = st->dtx_enabled;
break;
case SPEEX_SET_ABR:
st->abr_enabled = (*(int*)ptr);
st->vbr_enabled = 1;
{
int i=10, rate, target;
float vbr_qual;
target = (*(int*)ptr);
while (i>=0)
{
speex_encoder_ctl(st, SPEEX_SET_QUALITY, &i);
speex_encoder_ctl(st, SPEEX_GET_BITRATE, &rate);
if (rate <= target)
break;
i--;
}
vbr_qual=i;
if (vbr_qual<0)
vbr_qual=0;
speex_encoder_ctl(st, SPEEX_SET_VBR_QUALITY, &vbr_qual);
st->abr_count=0;
st->abr_drift=0;
st->abr_drift2=0;
}
break;
case SPEEX_GET_ABR:
(*(int*)ptr) = st->abr_enabled;
break;
case SPEEX_SET_VBR_QUALITY:
st->vbr_quality = (*(float*)ptr);
break;
case SPEEX_GET_VBR_QUALITY:
(*(float*)ptr) = st->vbr_quality;
break;
case SPEEX_SET_QUALITY:
{
int quality = (*(int*)ptr);
if (quality < 0)
quality = 0;
if (quality > 10)
quality = 10;
st->submodeSelect = st->submodeID = ((const SpeexNBMode*)(st->mode->mode))->quality_map[quality];
}
break;
case SPEEX_SET_COMPLEXITY:
st->complexity = (*(int*)ptr);
if (st->complexity<0)
st->complexity=0;
break;
case SPEEX_GET_COMPLEXITY:
(*(int*)ptr) = st->complexity;
break;
case SPEEX_SET_BITRATE:
{
int i=10, rate, target;
target = (*(int*)ptr);
while (i>=0)
{
speex_encoder_ctl(st, SPEEX_SET_QUALITY, &i);
speex_encoder_ctl(st, SPEEX_GET_BITRATE, &rate);
if (rate <= target)
break;
i--;
}
}
break;
case SPEEX_GET_BITRATE:
if (st->submodes[st->submodeID])
(*(int*)ptr) = st->sampling_rate*SUBMODE(bits_per_frame)/st->frameSize;
else
(*(int*)ptr) = st->sampling_rate*(NB_SUBMODE_BITS+1)/st->frameSize;
break;
case SPEEX_SET_SAMPLING_RATE:
st->sampling_rate = (*(int*)ptr);
break;
case SPEEX_GET_SAMPLING_RATE:
(*(int*)ptr)=st->sampling_rate;
break;
case SPEEX_RESET_STATE:
{
int i;
st->bounded_pitch = 1;
st->first = 1;
for (i=0;i<st->lpcSize;i++)
st->lsp[i]=(M_PI*((float)(i+1)))/(st->lpcSize+1);
for (i=0;i<st->lpcSize;i++)
st->mem_sw[i]=st->mem_sw_whole[i]=st->mem_sp[i]=st->mem_exc[i]=0;
for (i=0;i<st->frameSize+st->max_pitch+1;i++)
st->excBuf[i]=st->swBuf[i]=0;
for (i=0;i<st->windowSize;i++)
st->inBuf[i]=0;
}
break;
case SPEEX_SET_SUBMODE_ENCODING:
st->encode_submode = (*(int*)ptr);
break;
case SPEEX_GET_SUBMODE_ENCODING:
(*(int*)ptr) = st->encode_submode;
break;
case SPEEX_GET_LOOKAHEAD:
(*(int*)ptr)=(st->windowSize-st->frameSize);
break;
case SPEEX_SET_PLC_TUNING:
st->plc_tuning = (*(int*)ptr);
if (st->plc_tuning>100)
st->plc_tuning=100;
break;
case SPEEX_GET_PLC_TUNING:
(*(int*)ptr)=(st->plc_tuning);
break;
case SPEEX_GET_PI_GAIN:
{
int i;
spx_word32_t *g = (spx_word32_t*)ptr;
for (i=0;i<st->nbSubframes;i++)
g[i]=st->pi_gain[i];
}
break;
case SPEEX_GET_EXC:
{
int i;
spx_sig_t *e = (spx_sig_t*)ptr;
for (i=0;i<st->frameSize;i++)
e[i]=st->exc[i];
}
break;
case SPEEX_GET_INNOV:
{
int i;
spx_sig_t *e = (spx_sig_t*)ptr;
for (i=0;i<st->frameSize;i++)
e[i]=st->innov[i];
}
break;
case SPEEX_GET_RELATIVE_QUALITY:
(*(float*)ptr)=st->relative_quality;
break;
default:
speex_warning_int("Unknown nb_ctl request: ", request);
return -1;
}
return 0;
}
int nb_decoder_ctl(void *state, int request, void *ptr)
{
DecState *st;
st=(DecState*)state;
switch(request)
{
case SPEEX_SET_LOW_MODE:
case SPEEX_SET_MODE:
st->submodeID = (*(int*)ptr);
break;
case SPEEX_GET_LOW_MODE:
case SPEEX_GET_MODE:
(*(int*)ptr) = st->submodeID;
break;
case SPEEX_SET_ENH:
st->lpc_enh_enabled = *((int*)ptr);
break;
case SPEEX_GET_ENH:
*((int*)ptr) = st->lpc_enh_enabled;
break;
case SPEEX_GET_FRAME_SIZE:
(*(int*)ptr) = st->frameSize;
break;
case SPEEX_GET_BITRATE:
if (st->submodes[st->submodeID])
(*(int*)ptr) = st->sampling_rate*SUBMODE(bits_per_frame)/st->frameSize;
else
(*(int*)ptr) = st->sampling_rate*(NB_SUBMODE_BITS+1)/st->frameSize;
break;
case SPEEX_SET_SAMPLING_RATE:
st->sampling_rate = (*(int*)ptr);
break;
case SPEEX_GET_SAMPLING_RATE:
(*(int*)ptr)=st->sampling_rate;
break;
case SPEEX_SET_HANDLER:
{
SpeexCallback *c = (SpeexCallback*)ptr;
st->speex_callbacks[c->callback_id].func=c->func;
st->speex_callbacks[c->callback_id].data=c->data;
st->speex_callbacks[c->callback_id].callback_id=c->callback_id;
}
break;
case SPEEX_SET_USER_HANDLER:
{
SpeexCallback *c = (SpeexCallback*)ptr;
st->user_callback.func=c->func;
st->user_callback.data=c->data;
st->user_callback.callback_id=c->callback_id;
}
break;
case SPEEX_RESET_STATE:
{
int i;
for (i=0;i<2*st->lpcSize;i++)
st->mem_sp[i]=0;
for (i=0;i<st->frameSize + st->max_pitch + 1;i++)
st->excBuf[i]=0;
for (i=0;i<st->frameSize;i++)
st->inBuf[i] = 0;
}
break;
case SPEEX_SET_SUBMODE_ENCODING:
st->encode_submode = (*(int*)ptr);
break;
case SPEEX_GET_SUBMODE_ENCODING:
(*(int*)ptr) = st->encode_submode;
break;
case SPEEX_GET_PI_GAIN:
{
int i;
spx_word32_t *g = (spx_word32_t*)ptr;
for (i=0;i<st->nbSubframes;i++)
g[i]=st->pi_gain[i];
}
break;
case SPEEX_GET_EXC:
{
int i;
spx_sig_t *e = (spx_sig_t*)ptr;
for (i=0;i<st->frameSize;i++)
e[i]=st->exc[i];
}
break;
case SPEEX_GET_INNOV:
{
int i;
spx_sig_t *e = (spx_sig_t*)ptr;
for (i=0;i<st->frameSize;i++)
e[i]=st->innov[i];
}
break;
case SPEEX_GET_DTX_STATUS:
*((int*)ptr) = st->dtx_enabled;
break;
default:
speex_warning_int("Unknown nb_ctl request: ", request);
return -1;
}
return 0;
}