
Linköpings Universitet | Institutionen för Datavetenskap
 Examenarbete, 16 hp | Innovativ Programmering

Vårterminen 2018 | LIU-IDA/LITH-EX-G--18/049--SE

Using IndexedDB with a spatial
database

Ludvig Eriksson

Handledare: Erik Berglund
Examinator: Anders Fröberg

Linköping University
SE-581 83 Linköping

013-28 10 00, www.liu.se

 1

Using IndexedDB with a spatial database
Ludvig Eriksson

Linköping University
Norrköping, Sweden

lueri638@student.liu.se

ABSTRACT
Web technologies are becoming increasingly useful with
new features and the gap to native apps is narrowing.
Recently, IndexedDB was added to the web standard to
provide large scale storage solutions directly in the
browser. Is it performant enough to be used with a spatial
database? In this study, such a system is developed for
Foran Sverige AB and we learn that IndexedDB indeed can
be used for this purpose. Even storage demanding
geospatial applications can be developed as a multi-
platform system with a single codebase, all while
broadening the possible audience reach by avoiding an app
installation process.

Author Keywords
Progressive Web Apps; IndexedDB; GeoJSON; spatial
database; GIS

INTRODUCTION
The mobile web has always been a useful tool to reach
many users, since you aren’t limited to a certain platform.
Statistics show that the web dominates user reach; during
2017 the top mobile web properties had 2.2 times the
number of unique visitors as the top mobile apps1.
However, the same statistics show that the apps get a
whopping 16 times more usage time. One reason for this is
that the mobile web always has been relatively limited,
whereas apps have had a deeper integration with the
operating system, for example via push notifications and
complex storage and caching solutions. But what if the
high-friction action of installing an app could be bypassed,
and a native-like experience instead could be delivered
through the web? This is the goal with Progressive Web
Apps (PWAs) [1].

One technology commonly used to create PWAs is Service
Workers. They are processes running in the background in
the browser itself, but they can act as a proxy between the
web app and the network and can respond with cached
content for much faster load times. For complex storage
solutions Service Workers can use IndexedDB, an interface
for a JSON-based database that can hold large amounts of
data2.

1 "The 2017 U.S. Mobile App Report," comScore, 2017.
2 Mozilla Foundation, "IndexedDB API”
https://developer.mozilla.org/docs/Web/API/IndexedDB_A
PI

In addition to having the advantage for the user of requiring
a lower effort to visit, PWAs also have other advantages
over mobile apps for the developers. With them you don’t
have to maintain separate code bases for different device
types, screen sizes or operating systems. This can be both
economically more desirable and require fewer resources
for companies that are building systems for mobile
platforms.
Motivation
Foran Sverige AB develops systems for gathering,
analyzing and presentation of forestry and nature data3.
When clients are out in the field, often the mobile reception
isn’t optimal and load times can be unreasonably slow, if
present at all. Much of the data delivered to the clients is
geospatial vector data which shows various representations
of the terrain around them.

Geospatial data can be represented in many ways, but one
widely used format is GeoJSON which, like IndexedDB,
also is based on JSON. It was released as an open standard
in august 20164.

Purpose
The goal with this paper is to examine whether IndexedDB
is a feasible solution to use with a spatial database by
building a layer on top of it to handle the storage and
retrieval of GeoJSON files. General spatial queries are also
required for the solution to be considered adequate.

Specific Research Question (SRQ)
Can IndexedDB be performant enough to store a spatial
database on a mobile device?
What counts as performant enough will differ since each
system have different requirements, but in this paper it will
be based on the requirements from Foran Sverige AB,
which are described in the background chapter.

BACKGROUND
The requirements for the system developed in this study are
specified by Foran Sverige AB. Some aspects of it will be
tailored to fit their datasets and existing systems. One such
aspect is that the datasets that Foran will use this system
mostly are divided into groups that only contain features of
the same type. Therefore, a possible optimization for this
scenario is examined.

3 Foran Sverige AB, "Om företaget” http://foran.se/sv/om-
foeretaget. [Accessed 24 January 2018].
4 RFC 7946 – “The GeoJSON Format"

 2

Also specified are which spatial operations the system
needs to have in order to give the functionality needed to
integrate with Foran’s other systems. These are listed and
explained in the implementation chapter.

The end user of this system will mostly begin with a quite
large dataset and then make many small modifications to
the data one by one. Initial insertion may take quite a long
time if the dataset is large, but since this mostly will
happen only once it is deemed acceptable. The timeframe
for what is considered acceptable is within one minute for
datasets of a few thousands or tens of thousands of features.
When launching the system, most often a bulk loading of
features within a region will occur. It would be preferable if
this happened within a few seconds. After the initial
insertion and loading, the one by one modifications need to
happen quickly enough so that the system doesn’t feel
choppy and the user doesn’t have to look at a frozen user
interface. Studies have shown that human delay perception
is around 100 milliseconds [2] [3], so that is what I will use
as the acceptable timeframe.

THEORY
Progressive Web Apps
A Progressive Web App, or PWA for short, is technically
not an app in the common sense of the word. It is a regular
website which leverages certain technologies that often are
associated with native apps, such as push notifications or
databases. IndexedDB is the database solution for websites,
so if a website uses IndexedDB it can be seen as a
Progressive Web App.

Spatial databases and IndexedDB
Databases are usually structured in one of two ways;
relational or non-relational. IndexedDB is a non-relational
database where each entry is accessed via an index. Since
spatial data is two-dimensional (latitude and longitude) it is
not obvious how to store it with a single index. To solve
this problem, a spatial indexing method can be used. They
provide ways to structure spatial entries in a non-relational
database.

The difference between a regular database and a spatial
database is that a spatial database is optimized for
performing spatial queries. These might be operations such
as intersects, buffer and union, which are calculated on a
single or two features.

Spatial databases aren’t new, but the combination with
PWAs and IndexedDB, which are fairly new technologies
(the latest specification, Indexed Database API 2.0, was
released by W3C on January 30, 20185), has not been
researched much. Also, the datasets handled by companies
like Foran can be extremely large (it might for example be

5 W3C, "Indexed Database API 2.0”
https://www.w3.org/TR/2018/REC-IndexedDB-2-
20180130/

detailed vector data covering entire countries) which makes
the situation unique.

All interactions with IndexedDB are asynchronous and are
made by creating request objects that have callback
methods when the operations are completed. Databases are
stored per origin6 and are identified by a unique name.
Each database can have multiple object stores, which can
be seen as different named buckets of data.

A valid concern when it comes to new web technologies is
that it might only work in some browsers, and therefore not
for all users. IndexedDB, however, is well supported in all
major browsers7, with the exception being that Microsoft
Edge only has partial support; it does not support
IndexedDB inside blob web workers.

R-trees
One commonly used spatial indexing method is called R-
trees and was suggested by Antonin Guttman in 1984 [4]. It
works by keeping a data structure which is similar to a
binary search tree, which means it can be traversed quickly.

Each feature in the database is indexed by its bounding
box, which means that during a search you only need to
traverse nodes in the tree whose bounding box intersects
with the area you are searching.

OMT algorithm
The Overlap Minimizing Top-down bulk loading algorithm
for R-tree (OMT algorithm for short) was presented in
2003 by T. Lee and S. Lee [5] in a paper with the same
name. It is an optimization for insertions into an R-tree
when you have all data from the beginning, for example by
grouping features that are close to each other together to
minimize overlaps.

Quadtrees
The quadtree data structure was presented by R. A. Finkel
and J. L. Bentley in 1974 [6], and with its optimizations for
multi-dimensional indexing it is perfect for indexing points
in a mapping system but less so for features that cover
areas.

It works by having a top-level node which covers the entire
area to be mapped. You then insert points in that node until
it has reached the capacity of the tree (which you specify
yourself). After that, you divide the tree in four quadrants
and insert the next point into the sub-quadrant that contains
the point.

Since you can only store a certain number of features in a
given node and you want the nodes to contain its features,
this method does not work well for features other than
points. A feature with an area might not be able to be
placed in the tree if its target node already is full, since

6 The origin is defined by the scheme, host and port of the
URL for the website.
7 https://caniuse.com/#feat=indexeddb

 3

traversing down the tree may cause the nodes to become
smaller than the feature itself.

GeoJSON
GeoJSON is a standardized8 format that can be utilized to
represent geospatial features with JSON files. It supports
seven geometry types: Point, LineString, Polygon,
MultiPoint, MultiLineString, MultiPolygon and
GeometryCollection. Coordinates are defined by an array
of the longitude and latitude, in that order.

All GeoJSON objects must have a property called “type”,
which can either be “FeatureCollection” in which case the
object only will have one other property called “Features” –
an array of GeoJSON features, or it can be “Feature”,
which means the object is a single feature. Features must
have a property called “geometry”, containing a geometry
object, and one called “properties” which contains
attributes about the feature – you can store anything you
want to associate with the feature here. Geometries in turn
also have a property called “type”, which must be one of
the seven mentioned above, as well as one called
“coordinates”, which depending on the geometry type
contains different levels of nested coordinate arrays.

Snippet 1. An example of a GeoJSON feature of type Polygon
that contains a hole. The feature follows the right-hand rule.

In addition to the format of the JSON file, the standard
specifies a few rules for when features are valid. An
example is the right-hand rule, which states that for
Polygon and MultiPolygon features, exterior rings must be
specified in the counter-clockwise direction and interior
rings must be specified in the clockwise direction. Snippet
1 shows an example of a valid Polygon feature.

One thing to note is that the latest GeoJSON specification
removed alternative coordinate systems, which were a part
of the previous specification9. All coordinates are now
expected to be using the World Geodetic System 1984
(WGS 84). However, the current specification also states

8 RFC 7946 – “The GeoJSON Format"
9 https://tools.ietf.org/html/rfc7946#section-4

that alternative coordinate reference systems may be used if
all involved parties have a prior arrangement. The system
developed in this paper makes no assumptions about the
coordinate reference system used, so it can be used with
any. Foran, as well as most applications in Sweden, uses
the Swedish Reference Frame 1999 (SWEREF 99).
JSTS
A popular choice for performing various spatial operations
in Java is the Java Topology Suite, or JTS. It is an open
source library with support for many fundamental
geospatial operations. This is the project upon which many
others are based10, one of which is the JavaScript Topology
Suite, or JSTS, which is a port of the library to JavaScript.
It is a powerful library for many things related to spatial
data.
ECMAScript
ECMAScript is a scripting language specification which
JavaScript conforms to. New standards are released by the
Ecma International organization, the latest finalized version
(as of this paper) being ECMAScript 201711.

Promises and async/await
With ECMAScript 2015, Promises were introduced12. They
are objects that can be used for asynchronous tasks and
work similar to having callback methods. They may also be
used together with the async/await syntax introduced in
ECMAScript 201713. Snippet 2 shows an example of a
function returning a Promise and Snippets 3 and 4 shows
how to call this method using either Promise syntax or
async/await. This is an example where the function may
fail and return an error, but they can of course be used for
tasks that just take some time to execute; then the error
handling parts can be removed, and the expression becomes
significantly more compact.

While the standards for these features were only recently
released, all major browsers already have full support for
both Promises14 and async/await15.
Modules
JavaScript has grown into something a lot larger than it was
in its beginning, and as code bases become ever larger it
becomes harder to structure JavaScript code. The lack of

10 JTS GitHub repo,
https://github.com/locationtech/jts#downstream-projects
11 http://www.ecma-international.org/ecma-
262/8.0/index.html
12 https://www.ecma-international.org/ecma-262/6.0/#sec-
promise-objects
13 https://www.ecma-international.org/ecma-262/8.0/#sec-
async-function-definitions
14 https://caniuse.com/#feat=promises
15 https://caniuse.com/#feat=async-functions

{

 "type": "Feature",

 "geometry": {

 "type": "Polygon",

 "coordinates": [

 [[0, 0], [8, 0], [8, 8], [0, 8], [0, 0]],

 [[2, 2], [2, 3], [3, 3], [3, 2], [2, 2]]

]

 },

 "properties": {}

}

 4

modularity in JavaScript has been a well-known issue;
several studies have been made of how to use a module-like
pattern with JavaScript [7] [8] [9]. But, also released with
ECMAScript 2015 was the import syntax for modular
development16. With this, JavaScript finally received native
support for modularity. You can now in your HTML file
import a single script file, see Snippet 5, and from that
script file import other modules, see Snippet 6.

Snippet 2. An asynchronous function that can either succeed

or fail.

Snippet 3. Calling the function from Snippet 2 using Promise

syntax.

Snippet 4. Calling the function from Snippet 2 using

async/await syntax.

Snippet 5. Importing a script module in an HTML file.

Snippet 6. Importing another module in JavaScript.

16 https://www.ecma-international.org/ecma-262/6.0/#sec-
imports

Related work
One initial study showed that Service Workers, the running
processes that can provide cached resources by interacting
with IndexedDB, don’t have a significant impact on energy
consumption, especially for newer devices [10]. Since
energy consumption is a concern for mobile users,
especially if their work is depending on it, this means that
the choice of PWAs for this study might very well be
suitable for this aspect.

Research has also been made to show that IndexedDB can
handle large amounts of data with performance similar to
native alternatives [11]. This is also a promising result for
this study since I will need to handle large amounts of data,
but here I will focus on how well suited IndexedDB is for
spatial data in particular.

The fact that so little research has been made about these
technologies hopefully means that this study can contribute
with some new insights within the field.

METHOD
The work consisted of multiple parts, the first being to
choose a spatial indexing method that works well with
IndexedDB. Then the chosen indexing method was used to
implement the spatial database structure. Finally, the
implementation was evaluated in a few different real-world
scenarios to determine whether the solution was feasible for
the specification.

All parts of the system are implemented as ECMAScript
2015 modules and are therefore simple to use. Even though
the implementation is split up into multiple files, the end
user only needs to import one. Snippet 7 shows how the
end user might import the SpatialDatabase class,
described later in this chapter.

Snippet 7. How the end user might import the

SpatialDatabase class for use in another system.

Choosing the indexing method
By looking at how common JavaScript libraries handles
spatial indexing I found that R-tree was a very common
method. It is used internally in for example the mapping
library OpenLayers17 and the spatial analysis library
Turf.js18. I also found an existing library for building an R-
tree in memory, called Rbush19.

Another popular method, according to Foran, is the
Quadtree [6]. This might not seem optimal since it only
works for point features, but as mentioned the datasets that

17 OpenLayers API Documentation
(http://openlayers.org/en/latest/apidoc/ol.source.Vector)
18 Turf.js Source Code (https://github.com/Turfjs/turf)
19 https://github.com/mourner/rbush

function asynchronousTask() {

 return new Promise(function(resolve, reject) {

 // Perform asynchronous task...

 if (/* succeeded */) {

 resolve(/* result */);

 } else {

 reject(/* error */);

 }

 });

}

asynchronousTask().then(function(result) {

 // Task complete

}).catch(function(error) {

 // An error occurred

});

try {

 await asynchronousTask();

 // Task complete

}

catch(error) {

 // An error occurred

}

<script type="module" src="main.js"></script>

import { module } from 'module.js';

import { SpatialDatabase } from 'database.js';

 5

Foran will use with these systems will mostly be divided
into groups of the same type. So, it might be interesting to
see if Quadtrees could perform better for this type of data,
and if so, have a separate implementation that handles point
data. Therefore, I decided to compare the performance of
R-trees and Quadtrees for storing points in IndexedDB.

I based my R-tree implementation on the Rbush library by
rewriting it to store all data in IndexedDB instead of an in-
memory object structure. The quadtree implementation I
wrote from scratch, based on the pseudo code on the
Wikipedia page on Quadtrees20. To compare them I used a
dataset of over 11,000 points spread around the globe. The
two benchmark I used was to insert the points one by one,
as well as the time to retrieve all points within a bounding
box roughly the size of Europe, which contained about
3,000 of the points.

The results from this benchmark, which can be found in the
results chapter in Table 1, concluded that it was only
marginally faster to use Quadtrees and not worth splitting
the implementation. So, it was decided that the
implementation would use R-trees.

IndexedDB layer
I chose to divide my implementation in two layers, the first
being the one to interact with IndexedDB directly. This first
layer, handled by a class called LocalDatabase, can be
used regardless of which indexing method the second layer
uses. The first layer wraps up the request objects and
callback methods of IndexedDB in Promises, which
simplifies the interaction with the database as well as
making it possible to use its API with async/await. Figure 1
shows a graphical representation of how the layers are
structured.

To create a LocalDatabase, you need to specify a name
for the database you want to access, as well as the names of
the object stores you want it to contain (these will be
created on the first launch). Then you can start inserting
and retrieving objects from the database as seen in Snippet
8.

Spatial database layer
Above the lower IndexedDB layer comes the layer which
implements the spatial part of the database, and it’s handled
by the class SpatialDatabase. As with LocalDatabase,
the implementation is based on Promises. This gives the
user two different syntax options for using the database.
Snippets 9 and 10 show how to initialize a database and
insert a feature into it. A separate initialize function is
needed since async functions always returns a promise, and
constructors always return the created object, and the
initialization needs to be asynchronous since IndexedDB
must be setup with its internal request objects and callback
structure.

20 https://en.wikipedia.org/wiki/Quadtree#Pseudo_code

Snippet 8. An IndexedDB database called “db” will be

created, and it will contain two object stores called “one” and
“two”. Then an object is inserted into the “one” object store.

Finally, that same object is read back from the database.

Figure 1. The layered structure of the implementation. The
end user only interacts with the SpatialDatabase layer,

which in turn never interacts with IndexedDB directly. That
communication is handled by the LocalDatabase layer.

IndexedDB

LocalDatabase
First layer

SpatialDatabase
Second layer

End user

let db = await new LocalDatabase({

 name: 'db',

 objectStores: ['one', 'two']

}).initialize();

let obj = /* Any JSON-based object */;

await db.addObject(obj, 'one');

// If obj does not have a property 'id',

// IndexedDB will generate one.

let alsoObj = await db.getObject(obj.id, 'one');

 6

Snippet 9. Insertion of a GeoJSON feature into the database

using Promise syntax.

Snippet 10. Insertion of a GeoJSON feature into the database

using async/await syntax.

SpatialDatabase uses LocalDatabase internally,
creating two object stores; one for the features and one for
the index (in this case, the R-tree).

In addition to inserting a single feature, a bulk insert
method based on the OMT algorithm [5] was added by
slightly modifying the implementation from the Rbush
library to work with IndexedDB. Not only did this speed up
the insertion process, it also sped up searches in the tree.
Searching for features within a bounding box was already
implemented in the comparison with Quadtrees, but in
addition to this a few other ways to retrieve data was added.
First, another bounding box search was added where
features only need to intersect the bounding box, and not lie
completely within it. Another search for features within an
arbitrary polygon was also added. Finally, a nearest
neighbor search was added, where the user can search for
the X nearest neighbor features of a point, X being an
integer.

Integrity and reliability
An important next step in the implementation was to ensure
integrity and reliability of the database. Since the datasets
used by the system can be very large, and the devices it can
be used on can be fairly limited in terms of resources and
computational power, it is not unreasonable to think that a
crash may occur. In that case it is important that the data
stays intact and isn’t being corrupted. There might also be
cases where multiple operations are being called on at the
same time, and with the asynchronous nature of IndexedDB
they may not completed in the same order they were
initiated. This may result in errors in the data.

To ensure that the data isn’t being corrupted all database
operations related to an event needs to happen in a single
transaction. To achieve this, I specified a simple data
structure in which all changes that need to be made can be
gathered, and then sent to a method which executes all

changes with a single transaction to the database. An object
with this data structure, shown in Snippet 11, can be sent to
the lower IndexedDB layer and they will all be performed
in a single transaction.

Snippet 11. Data structure for performing multiple updates in
a single transaction. There are three possible changes for an

object (in the snippet called obj): it can be added, updated or
deleted. And these operations can be made to any object store

(in the snippet defined by storeName).

To tackle the problem with multiple asynchronous methods
not necessarily finishing in the correct order I added an
internal queue structure to the SpatialDatabase class. All
operations performed by the database will be added to the
back of the queue, and if another operation already is being
executed it will have to wait until that is finished before
being run itself. This ensures that all operations on the
database will return in the same order that they were called.

Validation
Since an IndexedDB database can store any JSON-based
object, it is technically possible for the user to put anything
in there. This would cause obvious problems when trying
to perform operations which expect the data to be
GeoJSON features. A few measures were taken to ensure
both that the objects inserted in fact are GeoJSON features,
as well as making sure the features have valid geometries
and follow the GeoJSON standard.

• Objects must have a specified type of “Feature”.
• Objects must have a geometry, and its type must

be one of the seven supported by the GeoJSON
standard.

• Polygon and MultiPolygon features must follow
the right-hand rule.

• Polygon and MultiPolygon features must not have
any self-intersections.

• Polygon and MultiPolygon features must not have
holes that are outside of their exterior rings.

• Polygon and MultiPolygon rings must be closed.
• Coordinates must consist of valid numbers.

Spatial operations
In addition to inserting and searching for features in the
database, a number of spatial operations for modifying
features were added. These methods help the user of this

let feature = /* a GeoJSON object */;

let db = new SpatialDatabase();

db.initialize().then(function() {

 return db.insert(feature);

}).then(function() {

 // Done

});

let feature = /* a GeoJSON object */;

let db = await new SpatialDatabase().initialize();

await db.insert(feature);

// Done

{

 "storeName": {

 "add": [obj, ...],

 "update": [obj, ...],

 "delete": [obj, ...]

 },

 ...

}

 7

database to perform common operations needed, as
specified by Foran.

The implementations of these methods utilize the JSTS
library, which has these and many more functions
available. JSTS is only used to manipulate the geometries
themselves, and this system wraps the library calls in own
functions that only exposes an API for working with
GeoJSON features. All operations are kept in separate files
and are imported to the SpatialDatabase class as
modules. An example of this can be seen in Snippet 12. By
doing this it is easy to extend the system with new
operations in the future, and since the SpatialDatabase
class in no way knows about JSTS it is easy to change or
have different underlying libraries performing the actual
geometry manipulations.

Snippet 12. How the buffer operation is imported into the

SpatialDatabase class.

All calls to the database that includes a feature as a
parameter can either be made with the GeoJSON object
itself or via its unique identifier. Snippet 13 shows an
example of how one of the spatial operations described
later in this subsection can be used in these two ways.

Snippet 13. Buffering a feature with 100 meters. The call is
made twice, first with only an identifier of a feature, second

with a feature object itself.

Buffer
Takes an existing feature in the database and adds a buffer
of a user specified size around it. An example can be seen
in Figures 2 and 3, where the first is the feature before the
buffer and the second is the feature after the buffer. Also
specifiable is the number of line segments that should be
used to represent a quadrant of a circle as well as the end
cap style, which for example is used when buffering around
the end of a line. Three styles are available.

• Round – a semi-circle.
• Flat – a straight line perpendicular to the end

segment.
• Square – a half square.

Figure 2. An arbitrary Polygon feature. This is the same

feature that is available in Appendix 1.

Figure 3. A buffered Polygon feature. For the original feature,

see Figure 2.

Line clip
Takes an existing feature and clips it with a line, creating
two or more new features as a result. Figure 4 shows a
Polygon feature with a crossing LineString feature. Figure
5 shows the result of the line clip operation on that Polygon
feature with that line. The user has the option to copy over
attributes from the original feature to the resulting ones.

Figure 4. An arbitrary Polygon feature, shown in blue, and a

LineString feature, shown in red. The Polygon feature is
available in Appendix 1, and the LineString feature is

available in Appendix 3.

Figure 5. The result of a line clip operation performed on a

Polygon feature with a LineString feature, both of which can
be seen in Figure 4.

import { buffer } from 'operations/buffer.js';

// Using an identifier

let buffered = await db.buffer(123, 100);

console.log(buffered.id); // 123

// Using a feature object

let feature = /* Existing feature in database */;

await db.buffer(feature, 100);

 8

Polygon clip
Takes an existing feature and cuts out a polygon shape
from it. Figure 6 shows an example of a Polygon feature, in
blue, with another overlapping Polygon feature, in red.
Figure 7 shows the resulting feature after the red feature
has been clipped from the blue feature.

Figure 6. Two Polygon features. The blue feature is available

in Appendix 1 and the red feature in Appendix 2.

Figure 7. The result of a polygon clip operation, performed on
one Polygon feature with another, both of which can be seen

in Figure 6.

Union
Takes two existing features and combines them into a
single feature. Figure 8 shows two adjacent Polygon
features, and Figure 9 shows the resulting feature after
performing the union operation on these two Polygon
features. The user will also have to specify the attributes for
the new feature, if they should have any.

Figure 8. Two adjacent Polygon features. The blue feature is
available in Appendix 1, and the green feature is available in

Appendix 4.

Figure 9. The result of a union operation performed on two

Polygon features, both of which can be seen in Figure 8.

Real-world performance evaluation
Since the system will probably begin with a quite large
dataset, and not build it up feature by feature, it is
important that bulk insertion of features is performant. In
order to test this, a sample GeoJSON file with 100,000
random points around the globe was inserted into the
database. Another important performance aspect that deals
with a lot of data is to retrieve all features within a
bounding box, in order to display them for a map for
example. To test this, a bounding box that just about covers
Europe was used to retrieve all points within it. For this
random dataset, about 3,800 points were within this area.

After the initial data has been inserted into the database,
most operations are made one at a time. As previously
mentioned, the important part here is that the system
doesn’t feel choppy or the user needs to look at a frozen
user interface, and the metric used to compare this will be
the 100 milliseconds found by previous studies. To
benchmark the spatial operations, an arbitrary Polygon
feature, available in Appendix 1, was designed to be
representative of an average feature from a real dataset.
Each operation was performed 100 times to eliminate
environmental variables, and then the average time was
used as the benchmark result.

• The buffer operation was performed by buffering
the Polygon feature with 100 meters. See Figures
2 and 3 for a graphical representation of the
feature before and after the operation.

• The line clip operation was performed with a
simple LineString feature consisting of only two
points; one on each side of the Polygon feature
being clipped. It represents the user splitting a
polygon in two by drawing a simple line over it,
for example. The LineString feature used in this
operation is available in Appendix 3. See Figures
4 and 5 for a graphical representation of the
features before and after the operation.

• The polygon clip operation was performed with a
simpler four-sided Polygon feature, representing
the user clipping away part of the feature by
drawing a simple polygon on the screen, for
example. The polygon used in this operation is

 9

available in Appendix 2. See Figures 6 and 7 for a
graphical representation of the features before and
after the operation.

• The union operation was performed against
another Polygon feature, designed the same way
that the first Polygon feature was designed. It
represents the user wanting to merge two existing
features, for example. The Polygon feature is
available in Appendix 4. See Figures 8 and 9 for a
graphical representation of the features before and
after the operation.

RESULTS
All benchmarks whose results are revealed in this chapter
were performed on two different devices, one desktop
device and one mobile device, unless stated otherwise.
Their specifications are described below.

• Desktop device: A computer running Windows 10
with an Intel Core i5-7400 processor and 16GB of
memory, using version 59 of the Firefox web
browser.

• Mobile device: An Apple iPhone X, which has an
Apple A11 Bionic processor and 3GB of memory,
running iOS 11.3 and using the Safari web
browser.

Choosing the indexing method

Indexing method Insertion Retrieval

R-tree 68s 1.0s

Quadtree 65s 1.0s
 Table 1. Results of the indexing method comparison

benchmarks. The times are averages of 10 runs of each
operation. This benchmark was only run on the desktop

system.

Real-world performance evaluation

Operation Desktop Mobile

Insert 100,000 points 15s 17s
Retrieve points within

Europe 10s 22s

 Table 2. Results of the insertion and retrieval benchmarks.
The times are averages of 10 runs.

Operation Desktop Mobile

Buffer 50ms 72ms

Polygon clip 38ms 36ms

Line clip 59ms 52ms

Union 50ms 55ms
 Table 3. Results of the different spatial operations. The times

are averages of 100 runs.

DISCUSSION
Results
One interesting thing is that the insertion benchmarks from
Table 1 were faster than the retrieval benchmarks on the
mobile device, while the opposite on the desktop. It shows
that different architectures and browser implementations
can result in very different performance metrics.

Method
When choosing the indexing method I would ideally have
liked to compare several methods. However, due to time
constraints, I needed to continue with the rest of the
implementation. So, there might be more performance
found in a system like this if an even more optimal
indexing method exists.

The indexing method benchmarks were made very early on
in development, and it was only later that I realized that it
is more relevant to run the benchmarks on a mobile device.
But, due to time constraints, and since a lot of work already
had been put into the chosen implementation, I chose to not
rerun the benchmarks on a mobile device.

The real-world performance evaluation was not as real as
initially planned. Since the system in which the system
developed in this paper is to be used at Foran hasn’t been
developed yet, I could not use that for testing. The feature
operations are very much representative of a real-world
scenario. However, I did not have access to a dataset large
enough for the initial bulk insertion and retrieval
benchmark. What I instead did was to create a sample
GeoJSON file with 100,000 random points around the
globe. This distribution isn’t really typical, but more of a
worst-case scenario for the R-tree structure since it tries to
group features as closely together as possible. This is not
all bad though, since knowing the worst-case performance
of the system is very useful.

Reliability
While the results of this study are quite concrete and should
be the same for any similar implementation, whether the
system is feasible for a specific application will be
dependent on the requirements of that specifications. The
system meets Foran’s requirements but may not meet all.
That is also why I after my SRQ specifies what I mean by
performant enough.

The work in a broader context
By being able to cache large datasets even for web
applications, many large data transfers can be avoided.
Should it be the norm for demanding applications to use
these storage technologies it could have a positive impact
by reducing the load on the cellular networks. This both
save money in the industry, as well as reduce energy
consumption; not only would data centers experience less
strain, but mobile devices themselves would consume less
energy since reading from an onboard storage doesn’t
require nearly as much energy as firing up power hungry
cellular antennas.

 10

CONCLUSIONS
The purpose was to develop a layer above IndexedDB that
represents a spatial database and examine whether it is a
feasible solution, meaning that it performs within the
specified targets. The layer has been completed with the
desired functionality, so all that remains is to evaluate its
performance.

By comparing the benchmarking results with the initial
specifications by Foran, the conclusion is that the system
indeed meets the performance requirements. The numbers
referred to in this chapter will be from the benchmarks on
the mobile device, since this is where the system is mostly
intended to be used.

For bulk insertion of a dataset of adequate size, the
resulting time of 17 seconds, see Table 2, is well within the
specified minute. The searching for features is a bit on the
slow side with its 22 seconds. However, as discussed in the
previous chapter, this was kind of a worst-case scenario,
and performance will typically be better than this. As for
the feature manipulation, the slowest operation was the
buffer operation, and that result of 72 milliseconds, see
Table 3, is within the target of 100 milliseconds; hence all
of them are meeting the requirements.

Answer to SRQ
Can IndexedDB be performant enough to store a spatial
database on a mobile device?
The results presented in this paper show that, with
specifications similar to those of Foran Sverige AB,
IndexedDB indeed is performant enough that it can be used
to store a spatial database. This enables more options for
cross-platform implementations – native code might not be
needed for storage demanding spatial applications to run
with adequate speed. For Foran it means that for this
system they can use a single code base to target practically
all platforms, and the users can use whichever device they
like.

Future work
One thing I would have liked to do if I had more time is to
run the benchmarks on many more devices. I only had
access to my own mobile device, but it would be interesting
to see a comparison with a number of different devices. I
don’t really know if the difference in performance between
my desktop device and mobile device is due to hardware or
browser implementations; this is something that could have
been seen with a more significant number of testing
devices. Doing a comprehensive study where all major
browsers on multiple platforms are compared might be an
option for a thesis for someone in the near future. It would,
together with this paper, contribute even more to a field of
increasing popularity.

Contributions
This study has provided a concrete example of how, thanks
to Progressive Web Apps, web technologies can be used for
things that were not previously possible. Before

IndexedDB, these storage possibilities just didn’t exist in
the browser. By leveraging web technologies, a multi-
platform system with a single codebase can be developed
even for storage demanding geospatial systems, and in the
process, you are avoiding the higher-friction app
installation action.
REFERENCES

[1] A. Russell, Progressive Web Apps: Escaping Tabs

Without Losing Our Soul, Infrequently Noted, 2015.

[2] R. B. Miller, "Response time in man-computer
conversational transactions," AFIPS Joint Computer
Conferences, pp. 267-277, 1968.

[3] S. K. Card, G. G. Robertson and J. D. Mackinlay,
"The information visualizer, an information
workspace," Proceedings Of The SIGCHI Conference:
Human Factors In Computing Systems, vol. April, pp.
181-186, 1991.

[4] A. Guttman, "R-trees: A Dynamic Index Structure for
Spatial Searching," Association for Computing
Machinery, 1984, pp. 47-57.

[5] T. Lee and S. Lee, "OMT: Overlap Minimizing Top-
down Bulk Loading Algorithm for R-tree," CAiSE
Short Paper Proceedings, Vols. 74, June, pp. 69-72,
2003.

[6] R. A. Finkel and J. L. Bentley, "Quad trees, A data
structure for retrieval on composite keys," Acta
Informatica, vol. 4, no. 1, pp. 1-9, 1974.

[7] F. De Kerchove, J. Noyé and M. Südholt, "Extensible
modules for JavaScript," Proceedings Of The ACM
Symposium On Applied Computing, no. April, 2016.

[8] F. Johansson, "Designmönster i Javascript,"
Networked Digital Library of Theses & Dissertations,
EBSCOhost, Uppsala, 2011.

[9] S. Ryu and S. Kang, "Formal Specification of a
JavaScript Module System," Acm Sigplan Notices, vol.
October, pp. 621-638, 2012.

[10] I. Malavolta, G. Procaccianti, P. Noorland and P.
Vukmirovic, "Assessing the Impact of Service
Workers on the Energy Efficiency of Progressive Web
Apps," 2017 IEEE/ACM 4th International Conference
on Mobile Software Engineering and Systems
(MOBILESoft), pp. 35-45, 2017.

[11] E. Nilsson and A. Lagerqvist, "The performance of
mobile hybrid applications: An experimental study,"
Networked Digital Library of Theses & Dissertations,
EBSCOhost, Jönköping, 2015.

APPENDIX 1

{

 "type": "Feature",

 "properties": {},

 "geometry": {

 "type": "Polygon",

 "coordinates": [

 [[592399.7343, 6501021.1675], [592382.142, 6500935.058899999596], [592185.411, 6500992.463899999857],

[591768.047, 6500868.553899999708], [591557.134, 6500805.6469], [591529.493, 6500571.412899999879],

[591422.496, 6500602.452899999917], [590561.357, 6500852.275899999775], [590481.382, 6500855.1549],

[589981.680199999944, 6500874.133], [589994.136599999969, 6501576.813], [590038.6923, 6501567.2752],

[590179.8898, 6501495.11429999955], [590444.9059, 6501362.893199999817], [591041.8802, 6501264.2049],

[591527.4624, 6501215.878399999812], [591736.815199999954, 6501208.546799999662], [591828.0712,

6501194.872], [591892.279499999946, 6501178.410099999979], [591959.067599999951, 6501152.1315],

[592018.648599999957, 6501110.99469999969], [592288.1149, 6501018.217699999921], [592309.9546,

6501057.5263], [592319.3766, 6501055.106399999931], [592326.3728, 6501050.533699999563], [592326.8995,

6501050.052099999972], [592326.3854, 6501045.743099999614], [592326.2548, 6501044.7198], [592329.0747,

6501044.080799999647], [592329.9429, 6501043.877299999818], [592330.6305, 6501046.7268], [592330.7752,

6501047.9983], [592331.1785, 6501048.2131], [592336.1372, 6501047.2169], [592337.345199999982,

6501046.692599999718], [592337.147699999972, 6501046.0734], [592336.9588, 6501045.2363], [592338.636,

6501043.193], [592339.3785, 6501042.5461], [592340.810599999968, 6501044.3398], [592341.1546,

6501045.081799999811], [592343.1065, 6501044.4654], [592348.1319, 6501039.918], [592352.609199999948,

6501034.228199999779], [592352.148799999966, 6501030.942499999888], [592352.0526, 6501030.0436],

[592353.3506, 6501028.7675], [592353.970199999982, 6501028.374099999666], [592356.4006, 6501031.8704],

[592356.958899999969, 6501032.831899999641], [592358.353099999949, 6501032.286799999885],

[592359.344399999944, 6501031.8178], [592359.659, 6501030.514899999835], [592360.9754, 6501028.12239999976],

[592361.7183, 6501027.4495], [592362.1833, 6501027.695], [592363.6352, 6501031.661399999633], [592363.6918,

6501032.7778], [592365.460399999982, 6501033.19], [592368.002, 6501032.586699999869], [592373.3229,

6501028.568699999712], [592375.766799999983, 6501025.7878], [592376.1596, 6501021.6306], [592376.2064,

6501019.738599999808], [592381.5155, 6501017.950899999589], [592384.102399999974, 6501019.982499999925],

[592385.0378, 6501021.592299999669], [592387.1776, 6501021.564], [592388.6171, 6501019.66579999961],

[592389.8479, 6501018.486899999902], [592392.265699999989, 6501018.039099999703], [592393.2465,

6501020.3623], [592398.676899999962, 6501021.3003], [592399.7343, 6501021.1675]]

]

 }

}

APPENDIX 2

{

 "type": "Feature",

 "properties": {},

 "geometry": {

 "type": "Polygon",

 "coordinates": [

 [

 [590182.804021941614337, 6500496.124051729217172],

 [590252.904221319011413, 6501261.384561598300934],

 [592174.818020915030502, 6500910.883564711548388],

 [592011.250889034476131, 6500139.781371560879052],

 [590182.804021941614337, 6500496.124051729217172]

]

]

 }

}

APPENDIX 3

{

 "type": "Feature",

 "properties": {},

 "geometry": {

 "type": "LineString",

 "coordinates": [

 [590450.061032070894726, 6500532.634572226554155],

 [591110.171242874930613, 6501403.04538116324693]

]

 }

}

APPENDIX 4

{

 "type": "Feature",

 "properties": {},

 "geometry": {

 "type": "Polygon",

 "coordinates": [[[593162.4804, 6506127.3426], [593161.7791, 6506123.373499999754], [593158.4668,

6506107.8376], [593155.741, 6506100.681599999778], [593152.111599999946, 6506090.734299999662],

[593147.8678, 6506086.210099999793], [593023.9899, 6506203.472299999557], [593012.9882, 6506213.8865],

[593009.561299999943, 6506389.541699999943], [593008.7611, 6506389.9605], [593010.045,

6506397.064399999566], [593009.8288, 6506397.8513], [593003.163399999961, 6506422.14], [592999.708699999959,

6506434.0329], [592990.411899999948, 6506464.10099999979], [592988.4957, 6506468.50569999963], [592984.6927,

6506477.2476], [592978.1557, 6506490.853], [592972.6535, 6506500.79349999968], [592975.5036,

6506499.270299999975], [593012.924099999946, 6506515.6353], [593026.8858, 6506557.761099999771],

[593004.821299999952, 6506587.87899999972], [592969.7199, 6506619.28699999955], [592910.9161, 6506696.7082],

[592887.3702, 6506729.701899999753], [592901.088299999945, 6506792.080199999735], [592900.6012,

6506832.5853], [592884.184, 6506874.3457], [592859.522, 6506879.8365], [592821.8405, 6506885.170599999838],

[592808.4209, 6506918.2861], [592776.264899999951, 6506945.389], [592755.7166, 6506969.7379],

[592729.416699999943, 6506991.1239], [592693.4455, 6507094.862499999814], [592700.104399999953,

6507142.68759999983], [592693.7439, 6507190.3562], [592703.2214, 6507240.896399999969],

[592815.795799999963, 6507207.3399], [592816.723899999983, 6507196.5695], [592818.733099999954,

6507189.2582], [592820.583, 6507180.907599999569], [592827.589799999958, 6507169.80719999969], [592833.5507,

6507162.53699999955], [592842.267, 6507154.768799999729], [592846.6052, 6507152.5403], [592851.686699999962,

6507150.8519], [592858.2966, 6507151.962399999611], [592865.4407, 6507156.1698], [592903.152,

6507101.724799999967], [592928.040099999984, 6507077.4281], [592947.124399999972, 6507054.5085],

[592960.5614, 6507019.946299999952], [592968.1946, 6506986.761199999601], [593012.410599999945,

6506919.292299999855], [593035.223099999945, 6506826.970099999569], [593032.817, 6506786.4302],

[593056.1715, 6506769.3491], [593091.7426, 6506698.8826], [593142.826299999957, 6506661.879599999636],

[593159.139199999976, 6506628.7988], [593139.164899999974, 6506605.4095], [593132.2972,

6506574.943699999712], [593148.314299999969, 6506566.455299999565], [593169.8395, 6506581.1824],

[593200.114, 6506590.2274], [593219.1635, 6506570.200899999589], [593236.6794, 6506557.3902], [593246.7883,

6506558.958499999717], [593252.465899999952, 6506562.843], [593253.213, 6506558.238099999726], [593254.0908,

6506547.595099999569], [593254.0307, 6506537.003299999982], [593254.0058, 6506533.8788], [593250.6175,

6506503.876899999566], [593249.6744, 6506495.564399999566], [593247.9057, 6506479.9753], [593241.694,

6506450.939199999906], [593239.4527, 6506445.07], [593237.8284, 6506434.6468], [593229.629599999986,

6506404.5871], [593222.7031, 6506388.2267], [593216.363, 6506369.8738], [593211.3151, 6506347.974899999797],

[593208.850199999986, 6506324.3262], [593207.253799999948, 6506311.5915], [593206.8061, 6506286.4675],

[593205.8174, 6506269.9598], [593206.5827, 6506247.8808], [593207.270499999984, 6506237.4543], [593206.2069,

6506221.976599999703], [593206.076099999947, 6506212.071299999952], [593202.210899999947, 6506195.7477],

[593199.096299999976, 6506184.5568], [593194.4231, 6506173.0661], [593178.168199999956,

6506153.031899999827], [593169.906599999988, 6506143.778599999845], [593167.1501, 6506139.1841],

[593163.7097, 6506134.3002], [593162.4804, 6506127.3426]]]

 }

}

