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ABSTRACT 
Web technologies are becoming increasingly useful with 
new features and the gap to native apps is narrowing. 
Recently, IndexedDB was added to the web standard to 
provide large scale storage solutions directly in the 
browser. Is it performant enough to be used with a spatial 
database? In this study, such a system is developed for 
Foran Sverige AB and we learn that IndexedDB indeed can 
be used for this purpose. Even storage demanding 
geospatial applications can be developed as a multi-
platform system with a single codebase, all while 
broadening the possible audience reach by avoiding an app 
installation process. 

Author Keywords 
Progressive Web Apps; IndexedDB; GeoJSON; spatial 
database; GIS 

INTRODUCTION 
The mobile web has always been a useful tool to reach 
many users, since you aren’t limited to a certain platform. 
Statistics show that the web dominates user reach; during 
2017 the top mobile web properties had 2.2 times the 
number of unique visitors as the top mobile apps1. 
However, the same statistics show that the apps get a 
whopping 16 times more usage time. One reason for this is 
that the mobile web always has been relatively limited, 
whereas apps have had a deeper integration with the 
operating system, for example via push notifications and 
complex storage and caching solutions. But what if the 
high-friction action of installing an app could be bypassed, 
and a native-like experience instead could be delivered 
through the web? This is the goal with Progressive Web 
Apps (PWAs) [1]. 

One technology commonly used to create PWAs is Service 
Workers. They are processes running in the background in 
the browser itself, but they can act as a proxy between the 
web app and the network and can respond with cached 
content for much faster load times. For complex storage 
solutions Service Workers can use IndexedDB, an interface 
for a JSON-based database that can hold large amounts of 
data2. 

                                                        
1 "The 2017 U.S. Mobile App Report," comScore, 2017. 
2 Mozilla Foundation, "IndexedDB API” 
https://developer.mozilla.org/docs/Web/API/IndexedDB_A
PI 

In addition to having the advantage for the user of requiring 
a lower effort to visit, PWAs also have other advantages 
over mobile apps for the developers. With them you don’t 
have to maintain separate code bases for different device 
types, screen sizes or operating systems. This can be both 
economically more desirable and require fewer resources 
for companies that are building systems for mobile 
platforms. 
Motivation 
Foran Sverige AB develops systems for gathering, 
analyzing and presentation of forestry and nature data3. 
When clients are out in the field, often the mobile reception 
isn’t optimal and load times can be unreasonably slow, if 
present at all. Much of the data delivered to the clients is 
geospatial vector data which shows various representations 
of the terrain around them. 

Geospatial data can be represented in many ways, but one 
widely used format is GeoJSON which, like IndexedDB, 
also is based on JSON. It was released as an open standard 
in august 20164. 

Purpose 
The goal with this paper is to examine whether IndexedDB 
is a feasible solution to use with a spatial database by 
building a layer on top of it to handle the storage and 
retrieval of GeoJSON files. General spatial queries are also 
required for the solution to be considered adequate. 

Specific Research Question (SRQ) 
Can IndexedDB be performant enough to store a spatial 
database on a mobile device? 
What counts as performant enough will differ since each 
system have different requirements, but in this paper it will 
be based on the requirements from Foran Sverige AB, 
which are described in the background chapter. 

BACKGROUND 
The requirements for the system developed in this study are 
specified by Foran Sverige AB. Some aspects of it will be 
tailored to fit their datasets and existing systems. One such 
aspect is that the datasets that Foran will use this system 
mostly are divided into groups that only contain features of 
the same type. Therefore, a possible optimization for this 
scenario is examined. 
                                                        
3 Foran Sverige AB, "Om företaget” http://foran.se/sv/om-
foeretaget. [Accessed 24 January 2018]. 
4 RFC 7946 – “The GeoJSON Format" 
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Also specified are which spatial operations the system 
needs to have in order to give the functionality needed to 
integrate with Foran’s other systems. These are listed and 
explained in the implementation chapter. 

The end user of this system will mostly begin with a quite 
large dataset and then make many small modifications to 
the data one by one. Initial insertion may take quite a long 
time if the dataset is large, but since this mostly will 
happen only once it is deemed acceptable. The timeframe 
for what is considered acceptable is within one minute for 
datasets of a few thousands or tens of thousands of features. 
When launching the system, most often a bulk loading of 
features within a region will occur. It would be preferable if 
this happened within a few seconds. After the initial 
insertion and loading, the one by one modifications need to 
happen quickly enough so that the system doesn’t feel 
choppy and the user doesn’t have to look at a frozen user 
interface. Studies have shown that human delay perception 
is around 100 milliseconds [2] [3], so that is what I will use 
as the acceptable timeframe. 

THEORY 
Progressive Web Apps 
A Progressive Web App, or PWA for short, is technically 
not an app in the common sense of the word. It is a regular 
website which leverages certain technologies that often are 
associated with native apps, such as push notifications or 
databases. IndexedDB is the database solution for websites, 
so if a website uses IndexedDB it can be seen as a 
Progressive Web App. 

Spatial databases and IndexedDB 
Databases are usually structured in one of two ways; 
relational or non-relational. IndexedDB is a non-relational 
database where each entry is accessed via an index. Since 
spatial data is two-dimensional (latitude and longitude) it is 
not obvious how to store it with a single index. To solve 
this problem, a spatial indexing method can be used. They 
provide ways to structure spatial entries in a non-relational 
database. 

The difference between a regular database and a spatial 
database is that a spatial database is optimized for 
performing spatial queries. These might be operations such 
as intersects, buffer and union, which are calculated on a 
single or two features. 

Spatial databases aren’t new, but the combination with 
PWAs and IndexedDB, which are fairly new technologies 
(the latest specification, Indexed Database API 2.0, was 
released by W3C on January 30, 20185), has not been 
researched much. Also, the datasets handled by companies 
like Foran can be extremely large (it might for example be 

                                                        
5 W3C, "Indexed Database API 2.0” 
https://www.w3.org/TR/2018/REC-IndexedDB-2-
20180130/ 

detailed vector data covering entire countries) which makes 
the situation unique. 

All interactions with IndexedDB are asynchronous and are 
made by creating request objects that have callback 
methods when the operations are completed. Databases are 
stored per origin6 and are identified by a unique name. 
Each database can have multiple object stores, which can 
be seen as different named buckets of data. 

A valid concern when it comes to new web technologies is 
that it might only work in some browsers, and therefore not 
for all users. IndexedDB, however, is well supported in all 
major browsers7, with the exception being that Microsoft 
Edge only has partial support; it does not support 
IndexedDB inside blob web workers. 

R-trees 
One commonly used spatial indexing method is called R-
trees and was suggested by Antonin Guttman in 1984 [4]. It 
works by keeping a data structure which is similar to a 
binary search tree, which means it can be traversed quickly. 

Each feature in the database is indexed by its bounding 
box, which means that during a search you only need to 
traverse nodes in the tree whose bounding box intersects 
with the area you are searching.  

OMT algorithm 
The Overlap Minimizing Top-down bulk loading algorithm 
for R-tree (OMT algorithm for short) was presented in 
2003 by T. Lee and S. Lee [5] in a paper with the same 
name. It is an optimization for insertions into an R-tree 
when you have all data from the beginning, for example by 
grouping features that are close to each other together to 
minimize overlaps. 

Quadtrees 
The quadtree data structure was presented by R. A. Finkel 
and J. L. Bentley in 1974 [6], and with its optimizations for 
multi-dimensional indexing it is perfect for indexing points 
in a mapping system but less so for features that cover 
areas.  

It works by having a top-level node which covers the entire 
area to be mapped. You then insert points in that node until 
it has reached the capacity of the tree (which you specify 
yourself). After that, you divide the tree in four quadrants 
and insert the next point into the sub-quadrant that contains 
the point.  

Since you can only store a certain number of features in a 
given node and you want the nodes to contain its features, 
this method does not work well for features other than 
points. A feature with an area might not be able to be 
placed in the tree if its target node already is full, since 
                                                        
6 The origin is defined by the scheme, host and port of the 
URL for the website. 
7 https://caniuse.com/#feat=indexeddb 
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traversing down the tree may cause the nodes to become 
smaller than the feature itself. 

GeoJSON 
GeoJSON is a standardized8 format that can be utilized to 
represent geospatial features with JSON files. It supports 
seven geometry types: Point, LineString, Polygon, 
MultiPoint, MultiLineString, MultiPolygon and 
GeometryCollection. Coordinates are defined by an array 
of the longitude and latitude, in that order. 

All GeoJSON objects must have a property called “type”, 
which can either be “FeatureCollection” in which case the 
object only will have one other property called “Features” – 
an array of GeoJSON features, or it can be “Feature”, 
which means the object is a single feature. Features must 
have a property called “geometry”, containing a geometry 
object, and one called “properties” which contains 
attributes about the feature – you can store anything you 
want to associate with the feature here. Geometries in turn 
also have a property called “type”, which must be one of 
the seven mentioned above, as well as one called 
“coordinates”, which depending on the geometry type 
contains different levels of nested coordinate arrays. 

 
Snippet 1. An example of a GeoJSON feature of type Polygon 
that contains a hole. The feature follows the right-hand rule. 

In addition to the format of the JSON file, the standard 
specifies a few rules for when features are valid. An 
example is the right-hand rule, which states that for 
Polygon and MultiPolygon features, exterior rings must be 
specified in the counter-clockwise direction and interior 
rings must be specified in the clockwise direction. Snippet 
1 shows an example of a valid Polygon feature. 

One thing to note is that the latest GeoJSON specification 
removed alternative coordinate systems, which were a part 
of the previous specification9. All coordinates are now 
expected to be using the World Geodetic System 1984 
(WGS 84). However, the current specification also states 

                                                        
8 RFC 7946 – “The GeoJSON Format" 
9 https://tools.ietf.org/html/rfc7946#section-4 

that alternative coordinate reference systems may be used if 
all involved parties have a prior arrangement. The system 
developed in this paper makes no assumptions about the 
coordinate reference system used, so it can be used with 
any. Foran, as well as most applications in Sweden, uses 
the Swedish Reference Frame 1999 (SWEREF 99).  
JSTS 
A popular choice for performing various spatial operations 
in Java is the Java Topology Suite, or JTS. It is an open 
source library with support for many fundamental 
geospatial operations. This is the project upon which many 
others are based10, one of which is the JavaScript Topology 
Suite, or JSTS, which is a port of the library to JavaScript. 
It is a powerful library for many things related to spatial 
data. 
ECMAScript 
ECMAScript is a scripting language specification which 
JavaScript conforms to. New standards are released by the 
Ecma International organization, the latest finalized version 
(as of this paper) being ECMAScript 201711. 

Promises and async/await 
With ECMAScript 2015, Promises were introduced12. They 
are objects that can be used for asynchronous tasks and 
work similar to having callback methods. They may also be 
used together with the async/await syntax introduced in 
ECMAScript 201713. Snippet 2 shows an example of a 
function returning a Promise and Snippets 3 and 4 shows 
how to call this method using either Promise syntax or 
async/await. This is an example where the function may 
fail and return an error, but they can of course be used for 
tasks that just take some time to execute; then the error 
handling parts can be removed, and the expression becomes 
significantly more compact. 

While the standards for these features were only recently 
released, all major browsers already have full support for 
both Promises14 and async/await15. 
Modules 
JavaScript has grown into something a lot larger than it was 
in its beginning, and as code bases become ever larger it 
becomes harder to structure JavaScript code. The lack of 

                                                        
10 JTS GitHub repo, 
https://github.com/locationtech/jts#downstream-projects 
11 http://www.ecma-international.org/ecma-
262/8.0/index.html 
12 https://www.ecma-international.org/ecma-262/6.0/#sec-
promise-objects 
13 https://www.ecma-international.org/ecma-262/8.0/#sec-
async-function-definitions 
14 https://caniuse.com/#feat=promises 
15 https://caniuse.com/#feat=async-functions 

{ 

  "type": "Feature", 

  "geometry": { 

    "type": "Polygon", 

    "coordinates": [ 

      [[0, 0], [8, 0], [8, 8], [0, 8], [0, 0]], 

      [[2, 2], [2, 3], [3, 3], [3, 2], [2, 2]] 

    ] 

  }, 

  "properties": {} 

} 
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modularity in JavaScript has been a well-known issue; 
several studies have been made of how to use a module-like 
pattern with JavaScript [7] [8] [9]. But, also released with 
ECMAScript 2015 was the import syntax for modular 
development16. With this, JavaScript finally received native 
support for modularity. You can now in your HTML file 
import a single script file, see Snippet 5, and from that 
script file import other modules, see Snippet 6. 

 
Snippet 2. An asynchronous function that can either succeed 

or fail. 

 
Snippet 3. Calling the function from Snippet 2 using Promise 

syntax. 

 
Snippet 4. Calling the function from Snippet 2 using 

async/await syntax. 

 
Snippet 5. Importing a script module in an HTML file. 

 
Snippet 6. Importing another module in JavaScript. 

                                                        
16 https://www.ecma-international.org/ecma-262/6.0/#sec-
imports 

Related work 
One initial study showed that Service Workers, the running 
processes that can provide cached resources by interacting 
with IndexedDB, don’t have a significant impact on energy 
consumption, especially for newer devices [10]. Since 
energy consumption is a concern for mobile users, 
especially if their work is depending on it, this means that 
the choice of PWAs for this study might very well be 
suitable for this aspect. 

Research has also been made to show that IndexedDB can 
handle large amounts of data with performance similar to 
native alternatives [11]. This is also a promising result for 
this study since I will need to handle large amounts of data, 
but here I will focus on how well suited IndexedDB is for 
spatial data in particular. 

The fact that so little research has been made about these 
technologies hopefully means that this study can contribute 
with some new insights within the field. 

METHOD 
The work consisted of multiple parts, the first being to 
choose a spatial indexing method that works well with 
IndexedDB. Then the chosen indexing method was used to 
implement the spatial database structure. Finally, the 
implementation was evaluated in a few different real-world 
scenarios to determine whether the solution was feasible for 
the specification. 

All parts of the system are implemented as ECMAScript 
2015 modules and are therefore simple to use. Even though 
the implementation is split up into multiple files, the end 
user only needs to import one. Snippet 7 shows how the 
end user might import the SpatialDatabase class, 
described later in this chapter. 

 
Snippet 7. How the end user might import the 

SpatialDatabase class for use in another system. 

Choosing the indexing method 
By looking at how common JavaScript libraries handles 
spatial indexing I found that R-tree was a very common 
method. It is used internally in for example the mapping 
library OpenLayers17 and the spatial analysis library 
Turf.js18. I also found an existing library for building an R-
tree in memory, called Rbush19. 

Another popular method, according to Foran, is the 
Quadtree [6]. This might not seem optimal since it only 
works for point features, but as mentioned the datasets that 

                                                        
17 OpenLayers API Documentation 
(http://openlayers.org/en/latest/apidoc/ol.source.Vector) 
18 Turf.js Source Code (https://github.com/Turfjs/turf) 
19 https://github.com/mourner/rbush 

function asynchronousTask() { 

    return new Promise(function(resolve, reject) { 

        // Perform asynchronous task... 

        if (/* succeeded */) { 

            resolve(/* result */); 

        } else { 

            reject(/* error */); 

        } 

    }); 

} 
 

asynchronousTask().then(function(result) { 

    // Task complete 

}).catch(function(error) { 

    // An error occurred    

}); 
 

try { 

    await asynchronousTask(); 

    // Task complete 

} 

catch(error) { 

    // An error occurred 

} 
 

<script type="module" src="main.js"></script> 

 

import { module } from 'module.js'; 

 

import { SpatialDatabase } from 'database.js'; 
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Foran will use with these systems will mostly be divided 
into groups of the same type. So, it might be interesting to 
see if Quadtrees could perform better for this type of data, 
and if so, have a separate implementation that handles point 
data. Therefore, I decided to compare the performance of 
R-trees and Quadtrees for storing points in IndexedDB. 

I based my R-tree implementation on the Rbush library by 
rewriting it to store all data in IndexedDB instead of an in-
memory object structure. The quadtree implementation I 
wrote from scratch, based on the pseudo code on the 
Wikipedia page on Quadtrees20. To compare them I used a 
dataset of over 11,000 points spread around the globe. The 
two benchmark I used was to insert the points one by one, 
as well as the time to retrieve all points within a bounding 
box roughly the size of Europe, which contained about 
3,000 of the points. 

The results from this benchmark, which can be found in the 
results chapter in Table 1, concluded that it was only 
marginally faster to use Quadtrees and not worth splitting 
the implementation. So, it was decided that the 
implementation would use R-trees. 

IndexedDB layer 
I chose to divide my implementation in two layers, the first 
being the one to interact with IndexedDB directly. This first 
layer, handled by a class called LocalDatabase, can be 
used regardless of which indexing method the second layer 
uses. The first layer wraps up the request objects and 
callback methods of IndexedDB in Promises, which 
simplifies the interaction with the database as well as 
making it possible to use its API with async/await. Figure 1 
shows a graphical representation of how the layers are 
structured. 

To create a LocalDatabase, you need to specify a name 
for the database you want to access, as well as the names of 
the object stores you want it to contain (these will be 
created on the first launch). Then you can start inserting 
and retrieving objects from the database as seen in Snippet 
8. 

Spatial database layer 
Above the lower IndexedDB layer comes the layer which 
implements the spatial part of the database, and it’s handled 
by the class SpatialDatabase. As with LocalDatabase, 
the implementation is based on Promises. This gives the 
user two different syntax options for using the database. 
Snippets 9 and 10 show how to initialize a database and 
insert a feature into it. A separate initialize function is 
needed since async functions always returns a promise, and 
constructors always return the created object, and the 
initialization needs to be asynchronous since IndexedDB 
must be setup with its internal request objects and callback 
structure. 

                                                        
20 https://en.wikipedia.org/wiki/Quadtree#Pseudo_code 

 
Snippet 8. An IndexedDB database called “db” will be 

created, and it will contain two object stores called “one” and 
“two”. Then an object is inserted into the “one” object store. 

Finally, that same object is read back from the database. 

 
Figure 1. The layered structure of the implementation. The 
end user only interacts with the SpatialDatabase layer, 

which in turn never interacts with IndexedDB directly. That 
communication is handled by the LocalDatabase layer. 

IndexedDB

LocalDatabase
First layer

SpatialDatabase
Second layer

End user

let db = await new LocalDatabase({ 

    name: 'db', 

    objectStores: ['one', 'two'] 

}).initialize(); 

let obj = /* Any JSON-based object */; 

await db.addObject(obj, 'one'); 

// If obj does not have a property 'id', 

// IndexedDB will generate one. 

let alsoObj = await db.getObject(obj.id, 'one'); 
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Snippet 9. Insertion of a GeoJSON feature into the database 

using Promise syntax. 

 
Snippet 10. Insertion of a GeoJSON feature into the database 

using async/await syntax. 

SpatialDatabase uses LocalDatabase internally, 
creating two object stores; one for the features and one for 
the index (in this case, the R-tree). 

In addition to inserting a single feature, a bulk insert 
method based on the OMT algorithm [5] was added by 
slightly modifying the implementation from the Rbush 
library to work with IndexedDB. Not only did this speed up 
the insertion process, it also sped up searches in the tree. 
Searching for features within a bounding box was already 
implemented in the comparison with Quadtrees, but in 
addition to this a few other ways to retrieve data was added. 
First, another bounding box search was added where 
features only need to intersect the bounding box, and not lie 
completely within it. Another search for features within an 
arbitrary polygon was also added. Finally, a nearest 
neighbor search was added, where the user can search for 
the X nearest neighbor features of a point, X being an 
integer. 

Integrity and reliability 
An important next step in the implementation was to ensure 
integrity and reliability of the database. Since the datasets 
used by the system can be very large, and the devices it can 
be used on can be fairly limited in terms of resources and 
computational power, it is not unreasonable to think that a 
crash may occur. In that case it is important that the data 
stays intact and isn’t being corrupted. There might also be 
cases where multiple operations are being called on at the 
same time, and with the asynchronous nature of IndexedDB 
they may not completed in the same order they were 
initiated. This may result in errors in the data. 

To ensure that the data isn’t being corrupted all database 
operations related to an event needs to happen in a single 
transaction. To achieve this, I specified a simple data 
structure in which all changes that need to be made can be 
gathered, and then sent to a method which executes all 

changes with a single transaction to the database. An object 
with this data structure, shown in Snippet 11, can be sent to 
the lower IndexedDB layer and they will all be performed 
in a single transaction. 

 
Snippet 11. Data structure for performing multiple updates in 
a single transaction. There are three possible changes for an 

object (in the snippet called obj): it can be added, updated or 
deleted. And these operations can be made to any object store 

(in the snippet defined by storeName). 

To tackle the problem with multiple asynchronous methods 
not necessarily finishing in the correct order I added an 
internal queue structure to the SpatialDatabase class. All 
operations performed by the database will be added to the 
back of the queue, and if another operation already is being 
executed it will have to wait until that is finished before 
being run itself. This ensures that all operations on the 
database will return in the same order that they were called. 

Validation 
Since an IndexedDB database can store any JSON-based 
object, it is technically possible for the user to put anything 
in there. This would cause obvious problems when trying 
to perform operations which expect the data to be 
GeoJSON features. A few measures were taken to ensure 
both that the objects inserted in fact are GeoJSON features, 
as well as making sure the features have valid geometries 
and follow the GeoJSON standard. 

• Objects must have a specified type of “Feature”. 
• Objects must have a geometry, and its type must 

be one of the seven supported by the GeoJSON 
standard. 

• Polygon and MultiPolygon features must follow 
the right-hand rule. 

• Polygon and MultiPolygon features must not have 
any self-intersections. 

• Polygon and MultiPolygon features must not have 
holes that are outside of their exterior rings. 

• Polygon and MultiPolygon rings must be closed. 
• Coordinates must consist of valid numbers. 

Spatial operations 
In addition to inserting and searching for features in the 
database, a number of spatial operations for modifying 
features were added. These methods help the user of this 

let feature = /* a GeoJSON object */; 

let db = new SpatialDatabase(); 

db.initialize().then(function() { 

    return db.insert(feature); 

}).then(function() { 

    // Done 

}); 
 

let feature = /* a GeoJSON object */; 

let db = await new SpatialDatabase().initialize(); 

await db.insert(feature); 

// Done 
 

{ 

    "storeName": { 

        "add": [obj, ...], 

        "update": [obj, ...], 

        "delete": [obj, ...] 

    }, 

    ... 

} 
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database to perform common operations needed, as 
specified by Foran. 

The implementations of these methods utilize the JSTS 
library, which has these and many more functions 
available. JSTS is only used to manipulate the geometries 
themselves, and this system wraps the library calls in own 
functions that only exposes an API for working with 
GeoJSON features. All operations are kept in separate files 
and are imported to the SpatialDatabase class as 
modules. An example of this can be seen in Snippet 12. By 
doing this it is easy to extend the system with new 
operations in the future, and since the SpatialDatabase 
class in no way knows about JSTS it is easy to change or 
have different underlying libraries performing the actual 
geometry manipulations. 

 
Snippet 12. How the buffer operation is imported into the 

SpatialDatabase class. 

All calls to the database that includes a feature as a 
parameter can either be made with the GeoJSON object 
itself or via its unique identifier. Snippet 13 shows an 
example of how one of the spatial operations described 
later in this subsection can be used in these two ways. 

 
Snippet 13. Buffering a feature with 100 meters. The call is 
made twice, first with only an identifier of a feature, second 

with a feature object itself.  

Buffer 
Takes an existing feature in the database and adds a buffer 
of a user specified size around it. An example can be seen 
in Figures 2 and 3, where the first is the feature before the 
buffer and the second is the feature after the buffer. Also 
specifiable is the number of line segments that should be 
used to represent a quadrant of a circle as well as the end 
cap style, which for example is used when buffering around 
the end of a line. Three styles are available. 

• Round – a semi-circle. 
• Flat – a straight line perpendicular to the end 

segment. 
• Square – a half square. 

 
Figure 2. An arbitrary Polygon feature. This is the same 

feature that is available in Appendix 1. 

 
Figure 3. A buffered Polygon feature. For the original feature, 

see Figure 2. 

Line clip 
Takes an existing feature and clips it with a line, creating 
two or more new features as a result. Figure 4 shows a 
Polygon feature with a crossing LineString feature. Figure 
5 shows the result of the line clip operation on that Polygon 
feature with that line. The user has the option to copy over 
attributes from the original feature to the resulting ones. 

 
Figure 4. An arbitrary Polygon feature, shown in blue, and a 

LineString feature, shown in red. The Polygon feature is 
available in Appendix 1, and the LineString feature is 

available in Appendix 3. 

 
Figure 5. The result of a line clip operation performed on a 

Polygon feature with a LineString feature, both of which can 
be seen in Figure 4. 

import { buffer } from 'operations/buffer.js'; 

// Using an identifier 

let buffered = await db.buffer(123, 100); 

console.log(buffered.id); // 123 

 

// Using a feature object 

let feature = /* Existing feature in database */; 

await db.buffer(feature, 100); 

 



 8 

Polygon clip 
Takes an existing feature and cuts out a polygon shape 
from it. Figure 6 shows an example of a Polygon feature, in 
blue, with another overlapping Polygon feature, in red. 
Figure 7 shows the resulting feature after the red feature 
has been clipped from the blue feature. 

 
Figure 6. Two Polygon features. The blue feature is available 

in Appendix 1 and the red feature in Appendix 2. 

 
Figure 7. The result of a polygon clip operation, performed on 
one Polygon feature with another, both of which can be seen 

in Figure 6. 

Union 
Takes two existing features and combines them into a 
single feature. Figure 8 shows two adjacent Polygon 
features, and Figure 9 shows the resulting feature after 
performing the union operation on these two Polygon 
features. The user will also have to specify the attributes for 
the new feature, if they should have any. 

 
Figure 8. Two adjacent Polygon features. The blue feature is 
available in Appendix 1, and the green feature is available in 

Appendix 4. 

 
Figure 9. The result of a union operation performed on two 

Polygon features, both of which can be seen in Figure 8. 

Real-world performance evaluation 
Since the system will probably begin with a quite large 
dataset, and not build it up feature by feature, it is 
important that bulk insertion of features is performant. In 
order to test this, a sample GeoJSON file with 100,000 
random points around the globe was inserted into the 
database. Another important performance aspect that deals 
with a lot of data is to retrieve all features within a 
bounding box, in order to display them for a map for 
example. To test this, a bounding box that just about covers 
Europe was used to retrieve all points within it. For this 
random dataset, about 3,800 points were within this area. 

After the initial data has been inserted into the database, 
most operations are made one at a time. As previously 
mentioned, the important part here is that the system 
doesn’t feel choppy or the user needs to look at a frozen 
user interface, and the metric used to compare this will be 
the 100 milliseconds found by previous studies. To 
benchmark the spatial operations, an arbitrary Polygon 
feature, available in Appendix 1, was designed to be 
representative of an average feature from a real dataset. 
Each operation was performed 100 times to eliminate 
environmental variables, and then the average time was 
used as the benchmark result. 

• The buffer operation was performed by buffering 
the Polygon feature with 100 meters. See Figures 
2 and 3 for a graphical representation of the 
feature before and after the operation. 

• The line clip operation was performed with a 
simple LineString feature consisting of only two 
points; one on each side of the Polygon feature 
being clipped. It represents the user splitting a 
polygon in two by drawing a simple line over it, 
for example. The LineString feature used in this 
operation is available in Appendix 3. See Figures 
4 and 5 for a graphical representation of the 
features before and after the operation. 

• The polygon clip operation was performed with a 
simpler four-sided Polygon feature, representing 
the user clipping away part of the feature by 
drawing a simple polygon on the screen, for 
example. The polygon used in this operation is 



 9 

available in Appendix 2. See Figures 6 and 7 for a 
graphical representation of the features before and 
after the operation. 

• The union operation was performed against 
another Polygon feature, designed the same way 
that the first Polygon feature was designed. It 
represents the user wanting to merge two existing 
features, for example. The Polygon feature is 
available in Appendix 4. See Figures 8 and 9 for a 
graphical representation of the features before and 
after the operation. 

RESULTS 
All benchmarks whose results are revealed in this chapter 
were performed on two different devices, one desktop 
device and one mobile device, unless stated otherwise. 
Their specifications are described below. 

• Desktop device: A computer running Windows 10 
with an Intel Core i5-7400 processor and 16GB of 
memory, using version 59 of the Firefox web 
browser. 

• Mobile device: An Apple iPhone X, which has an 
Apple A11 Bionic processor and 3GB of memory, 
running iOS 11.3 and using the Safari web 
browser. 

Choosing the indexing method 

Indexing method Insertion Retrieval 

R-tree 68s 1.0s 

Quadtree 65s 1.0s 
 Table 1. Results of the indexing method comparison 

benchmarks. The times are averages of 10 runs of each 
operation. This benchmark was only run on the desktop 

system. 

Real-world performance evaluation 

Operation Desktop Mobile 

Insert 100,000 points 15s 17s 
Retrieve points within 

Europe 10s 22s 

 Table 2. Results of the insertion and retrieval benchmarks. 
The times are averages of 10 runs. 

Operation Desktop Mobile 

Buffer 50ms 72ms 

Polygon clip 38ms 36ms 

Line clip 59ms 52ms 

Union 50ms 55ms 
 Table 3. Results of the different spatial operations. The times 

are averages of 100 runs. 

DISCUSSION 
Results 
One interesting thing is that the insertion benchmarks from 
Table 1 were faster than the retrieval benchmarks on the 
mobile device, while the opposite on the desktop. It shows 
that different architectures and browser implementations 
can result in very different performance metrics. 

Method 
When choosing the indexing method I would ideally have 
liked to compare several methods. However, due to time 
constraints, I needed to continue with the rest of the 
implementation. So, there might be more performance 
found in a system like this if an even more optimal 
indexing method exists. 

The indexing method benchmarks were made very early on 
in development, and it was only later that I realized that it 
is more relevant to run the benchmarks on a mobile device. 
But, due to time constraints, and since a lot of work already 
had been put into the chosen implementation, I chose to not 
rerun the benchmarks on a mobile device. 

The real-world performance evaluation was not as real as 
initially planned. Since the system in which the system 
developed in this paper is to be used at Foran hasn’t been 
developed yet, I could not use that for testing. The feature 
operations are very much representative of a real-world 
scenario. However, I did not have access to a dataset large 
enough for the initial bulk insertion and retrieval 
benchmark. What I instead did was to create a sample 
GeoJSON file with 100,000 random points around the 
globe. This distribution isn’t really typical, but more of a 
worst-case scenario for the R-tree structure since it tries to 
group features as closely together as possible. This is not 
all bad though, since knowing the worst-case performance 
of the system is very useful. 

Reliability 
While the results of this study are quite concrete and should 
be the same for any similar implementation, whether the 
system is feasible for a specific application will be 
dependent on the requirements of that specifications. The 
system meets Foran’s requirements but may not meet all. 
That is also why I after my SRQ specifies what I mean by 
performant enough. 

The work in a broader context 
By being able to cache large datasets even for web 
applications, many large data transfers can be avoided. 
Should it be the norm for demanding applications to use 
these storage technologies it could have a positive impact 
by reducing the load on the cellular networks. This both 
save money in the industry, as well as reduce energy 
consumption; not only would data centers experience less 
strain, but mobile devices themselves would consume less 
energy since reading from an onboard storage doesn’t 
require nearly as much energy as firing up power hungry 
cellular antennas. 
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CONCLUSIONS 
The purpose was to develop a layer above IndexedDB that 
represents a spatial database and examine whether it is a 
feasible solution, meaning that it performs within the 
specified targets. The layer has been completed with the 
desired functionality, so all that remains is to evaluate its 
performance. 

By comparing the benchmarking results with the initial 
specifications by Foran, the conclusion is that the system 
indeed meets the performance requirements. The numbers 
referred to in this chapter will be from the benchmarks on 
the mobile device, since this is where the system is mostly 
intended to be used. 

For bulk insertion of a dataset of adequate size, the 
resulting time of 17 seconds, see Table 2, is well within the 
specified minute. The searching for features is a bit on the 
slow side with its 22 seconds. However, as discussed in the 
previous chapter, this was kind of a worst-case scenario, 
and performance will typically be better than this. As for 
the feature manipulation, the slowest operation was the 
buffer operation, and that result of 72 milliseconds, see 
Table 3, is within the target of 100 milliseconds; hence all 
of them are meeting the requirements. 

Answer to SRQ 
Can IndexedDB be performant enough to store a spatial 
database on a mobile device? 
The results presented in this paper show that, with 
specifications similar to those of Foran Sverige AB, 
IndexedDB indeed is performant enough that it can be used 
to store a spatial database. This enables more options for 
cross-platform implementations – native code might not be 
needed for storage demanding spatial applications to run 
with adequate speed. For Foran it means that for this 
system they can use a single code base to target practically 
all platforms, and the users can use whichever device they 
like. 

Future work 
One thing I would have liked to do if I had more time is to 
run the benchmarks on many more devices. I only had 
access to my own mobile device, but it would be interesting 
to see a comparison with a number of different devices. I 
don’t really know if the difference in performance between 
my desktop device and mobile device is due to hardware or 
browser implementations; this is something that could have 
been seen with a more significant number of testing 
devices. Doing a comprehensive study where all major 
browsers on multiple platforms are compared might be an 
option for a thesis for someone in the near future. It would, 
together with this paper, contribute even more to a field of 
increasing popularity. 

Contributions 
This study has provided a concrete example of how, thanks 
to Progressive Web Apps, web technologies can be used for 
things that were not previously possible. Before 

IndexedDB, these storage possibilities just didn’t exist in 
the browser. By leveraging web technologies, a multi-
platform system with a single codebase can be developed 
even for storage demanding geospatial systems, and in the 
process, you are avoiding the higher-friction app 
installation action. 
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APPENDIX 1 

 
  

{ 

  "type": "Feature", 

  "properties": {}, 

  "geometry": { 

    "type": "Polygon", 

    "coordinates": [ 

      [[592399.7343, 6501021.1675], [592382.142, 6500935.058899999596], [592185.411, 6500992.463899999857], 

[591768.047, 6500868.553899999708], [591557.134, 6500805.6469], [591529.493, 6500571.412899999879], 

[591422.496, 6500602.452899999917], [590561.357, 6500852.275899999775], [590481.382, 6500855.1549], 

[589981.680199999944, 6500874.133], [589994.136599999969, 6501576.813], [590038.6923, 6501567.2752], 

[590179.8898, 6501495.11429999955], [590444.9059, 6501362.893199999817], [591041.8802, 6501264.2049], 

[591527.4624, 6501215.878399999812], [591736.815199999954, 6501208.546799999662], [591828.0712, 

6501194.872], [591892.279499999946, 6501178.410099999979], [591959.067599999951, 6501152.1315], 

[592018.648599999957, 6501110.99469999969], [592288.1149, 6501018.217699999921], [592309.9546, 

6501057.5263], [592319.3766, 6501055.106399999931], [592326.3728, 6501050.533699999563], [592326.8995, 

6501050.052099999972], [592326.3854, 6501045.743099999614], [592326.2548, 6501044.7198], [592329.0747, 

6501044.080799999647], [592329.9429, 6501043.877299999818], [592330.6305, 6501046.7268], [592330.7752, 

6501047.9983], [592331.1785, 6501048.2131], [592336.1372, 6501047.2169], [592337.345199999982, 

6501046.692599999718], [592337.147699999972, 6501046.0734], [592336.9588, 6501045.2363], [592338.636, 

6501043.193], [592339.3785, 6501042.5461], [592340.810599999968, 6501044.3398], [592341.1546, 

6501045.081799999811], [592343.1065, 6501044.4654], [592348.1319, 6501039.918], [592352.609199999948, 

6501034.228199999779], [592352.148799999966, 6501030.942499999888], [592352.0526, 6501030.0436], 

[592353.3506, 6501028.7675], [592353.970199999982, 6501028.374099999666], [592356.4006, 6501031.8704], 

[592356.958899999969, 6501032.831899999641], [592358.353099999949, 6501032.286799999885], 

[592359.344399999944, 6501031.8178], [592359.659, 6501030.514899999835], [592360.9754, 6501028.12239999976], 

[592361.7183, 6501027.4495], [592362.1833, 6501027.695], [592363.6352, 6501031.661399999633], [592363.6918, 

6501032.7778], [592365.460399999982, 6501033.19], [592368.002, 6501032.586699999869], [592373.3229, 

6501028.568699999712], [592375.766799999983, 6501025.7878], [592376.1596, 6501021.6306], [592376.2064, 

6501019.738599999808], [592381.5155, 6501017.950899999589], [592384.102399999974, 6501019.982499999925], 

[592385.0378, 6501021.592299999669], [592387.1776, 6501021.564], [592388.6171, 6501019.66579999961], 

[592389.8479, 6501018.486899999902], [592392.265699999989, 6501018.039099999703], [592393.2465, 

6501020.3623], [592398.676899999962, 6501021.3003], [592399.7343, 6501021.1675]] 

    ] 

  } 

} 

 
 



  

APPENDIX 2 

 

{ 

  "type": "Feature", 

  "properties": {}, 

  "geometry": { 

    "type": "Polygon", 

    "coordinates": [ 

      [ 

        [590182.804021941614337, 6500496.124051729217172], 

        [590252.904221319011413, 6501261.384561598300934], 

        [592174.818020915030502, 6500910.883564711548388], 

        [592011.250889034476131, 6500139.781371560879052], 

        [590182.804021941614337, 6500496.124051729217172] 

      ] 

    ] 

  } 

} 

 
 



  

APPENDIX 3 

 
  

{ 

  "type": "Feature", 

  "properties": {}, 

  "geometry": { 

      "type": "LineString", 

      "coordinates": [ 

          [590450.061032070894726, 6500532.634572226554155], 

          [591110.171242874930613, 6501403.04538116324693] 

      ] 

  } 

} 



  

APPENDIX 4 

 

{ 

  "type": "Feature", 

  "properties": {}, 

  "geometry": { 

    "type": "Polygon", 

    "coordinates": [[[593162.4804, 6506127.3426], [593161.7791, 6506123.373499999754], [593158.4668, 

6506107.8376], [593155.741, 6506100.681599999778], [593152.111599999946, 6506090.734299999662], 

[593147.8678, 6506086.210099999793], [593023.9899, 6506203.472299999557], [593012.9882, 6506213.8865], 

[593009.561299999943, 6506389.541699999943], [593008.7611, 6506389.9605], [593010.045, 

6506397.064399999566], [593009.8288, 6506397.8513], [593003.163399999961, 6506422.14], [592999.708699999959, 

6506434.0329], [592990.411899999948, 6506464.10099999979], [592988.4957, 6506468.50569999963], [592984.6927, 

6506477.2476], [592978.1557, 6506490.853], [592972.6535, 6506500.79349999968], [592975.5036, 

6506499.270299999975], [593012.924099999946, 6506515.6353], [593026.8858, 6506557.761099999771], 

[593004.821299999952, 6506587.87899999972], [592969.7199, 6506619.28699999955], [592910.9161, 6506696.7082], 

[592887.3702, 6506729.701899999753], [592901.088299999945, 6506792.080199999735], [592900.6012, 

6506832.5853], [592884.184, 6506874.3457], [592859.522, 6506879.8365], [592821.8405, 6506885.170599999838], 

[592808.4209, 6506918.2861], [592776.264899999951, 6506945.389], [592755.7166, 6506969.7379], 

[592729.416699999943, 6506991.1239], [592693.4455, 6507094.862499999814], [592700.104399999953, 

6507142.68759999983], [592693.7439, 6507190.3562], [592703.2214, 6507240.896399999969], 

[592815.795799999963, 6507207.3399], [592816.723899999983, 6507196.5695], [592818.733099999954, 

6507189.2582], [592820.583, 6507180.907599999569], [592827.589799999958, 6507169.80719999969], [592833.5507, 

6507162.53699999955], [592842.267, 6507154.768799999729], [592846.6052, 6507152.5403], [592851.686699999962, 

6507150.8519], [592858.2966, 6507151.962399999611], [592865.4407, 6507156.1698], [592903.152, 

6507101.724799999967], [592928.040099999984, 6507077.4281], [592947.124399999972, 6507054.5085], 

[592960.5614, 6507019.946299999952], [592968.1946, 6506986.761199999601], [593012.410599999945, 

6506919.292299999855], [593035.223099999945, 6506826.970099999569], [593032.817, 6506786.4302], 

[593056.1715, 6506769.3491], [593091.7426, 6506698.8826], [593142.826299999957, 6506661.879599999636], 

[593159.139199999976, 6506628.7988], [593139.164899999974, 6506605.4095], [593132.2972, 

6506574.943699999712], [593148.314299999969, 6506566.455299999565], [593169.8395, 6506581.1824], 

[593200.114, 6506590.2274], [593219.1635, 6506570.200899999589], [593236.6794, 6506557.3902], [593246.7883, 

6506558.958499999717], [593252.465899999952, 6506562.843], [593253.213, 6506558.238099999726], [593254.0908, 

6506547.595099999569], [593254.0307, 6506537.003299999982], [593254.0058, 6506533.8788], [593250.6175, 

6506503.876899999566], [593249.6744, 6506495.564399999566], [593247.9057, 6506479.9753], [593241.694, 

6506450.939199999906], [593239.4527, 6506445.07], [593237.8284, 6506434.6468], [593229.629599999986, 

6506404.5871], [593222.7031, 6506388.2267], [593216.363, 6506369.8738], [593211.3151, 6506347.974899999797], 

[593208.850199999986, 6506324.3262], [593207.253799999948, 6506311.5915], [593206.8061, 6506286.4675], 

[593205.8174, 6506269.9598], [593206.5827, 6506247.8808], [593207.270499999984, 6506237.4543], [593206.2069, 

6506221.976599999703], [593206.076099999947, 6506212.071299999952], [593202.210899999947, 6506195.7477], 

[593199.096299999976, 6506184.5568], [593194.4231, 6506173.0661], [593178.168199999956, 

6506153.031899999827], [593169.906599999988, 6506143.778599999845], [593167.1501, 6506139.1841], 

[593163.7097, 6506134.3002], [593162.4804, 6506127.3426]]] 

  } 

} 
 


