OpenSceneGraph/examples/osgimpostor/TestManipulator.cpp
Robert Osfield deac5b8d4a Updated osgstereoimage and osgimpostor to handle the new default
orientation of normalized mouse coords.
2003-04-14 18:49:41 +00:00

380 lines
9.5 KiB
C++

#include "TestManipulator.h"
#include <osg/Notify>
using namespace osg;
using namespace osgGA;
TestManipulator::TestManipulator()
{
_modelScale = 0.01f;
_minimumZoomScale = 0.05f;
_thrown = false;
_distance = 1.0f;
}
TestManipulator::~TestManipulator()
{
}
void TestManipulator::setNode(osg::Node* node)
{
_node = node;
if (_node.get())
{
const osg::BoundingSphere& boundingSphere=_node->getBound();
_modelScale = boundingSphere._radius;
}
}
const osg::Node* TestManipulator::getNode() const
{
return _node.get();
}
osg::Node* TestManipulator::getNode()
{
return _node.get();
}
/*ea*/
void TestManipulator::home(const GUIEventAdapter& ,GUIActionAdapter& us)
{
if(_node.get() && _camera.get())
{
const osg::BoundingSphere& boundingSphere=_node->getBound();
_camera->setView(boundingSphere.center()+osg::Vec3(0.0f, 0.0f, 20.0f),
boundingSphere.center()+osg::Vec3(0.0f, 1.0f, 20.0f),
osg::Vec3(0.0f, 0.0f, 1.0f));
computeLocalDataFromCamera();
us.requestRedraw();
}
}
void TestManipulator::init(const GUIEventAdapter& ,GUIActionAdapter& )
{
flushMouseEventStack();
computeLocalDataFromCamera();
}
bool TestManipulator::handle(const GUIEventAdapter& ea,GUIActionAdapter& us)
{
if(!_camera.get()) return false;
switch(ea.getEventType())
{
case(GUIEventAdapter::PUSH):
{
flushMouseEventStack();
addMouseEvent(ea);
if (calcMovement()) us.requestRedraw();
us.requestContinuousUpdate(false);
_thrown = false;
return true;
}
case(GUIEventAdapter::RELEASE):
{
if (ea.getButtonMask()==0)
{
if (isMouseMoving())
{
if (calcMovement())
{
us.requestRedraw();
us.requestContinuousUpdate(true);
_thrown = true;
}
}
else
{
flushMouseEventStack();
addMouseEvent(ea);
if (calcMovement()) us.requestRedraw();
us.requestContinuousUpdate(false);
_thrown = false;
}
}
else
{
flushMouseEventStack();
addMouseEvent(ea);
if (calcMovement()) us.requestRedraw();
us.requestContinuousUpdate(false);
_thrown = false;
}
return true;
}
case(GUIEventAdapter::DRAG):
{
addMouseEvent(ea);
if (calcMovement()) us.requestRedraw();
us.requestContinuousUpdate(false);
_thrown = false;
return true;
}
case(GUIEventAdapter::MOVE):
{
return false;
}
case(GUIEventAdapter::KEYDOWN):
if (ea.getKey()==' ')
{
flushMouseEventStack();
_thrown = false;
home(ea,us);
us.requestRedraw();
us.requestContinuousUpdate(false);
return true;
} else if (ea.getKey()=='+')
{
_camera->setFusionDistanceRatio(_camera->getFusionDistanceRatio()*1.25f);
return true;
}
else if (ea.getKey()=='-')
{
_camera->setFusionDistanceRatio(_camera->getFusionDistanceRatio()/1.25f);
return true;
}
// this is quick hack to test out othographic projection.
// else if (ea.getKey()=='O')
// {
// float dist = _camera->getLookDistance();
// _camera->setOrtho(-dist,dist,-dist,dist,-dist,dist);
// return true;
// }
return false;
case(GUIEventAdapter::FRAME):
_camera->setFusionDistanceMode(osg::Camera::PROPORTIONAL_TO_LOOK_DISTANCE);
if (_thrown)
{
if (calcMovement()) us.requestRedraw();
return true;
}
return false;
default:
return false;
}
}
bool TestManipulator::isMouseMoving()
{
if (_ga_t0.get()==NULL || _ga_t1.get()==NULL) return false;
static const float velocity = 0.1f;
float dx = _ga_t0->getXnormalized()-_ga_t1->getXnormalized();
float dy = _ga_t0->getYnormalized()-_ga_t1->getYnormalized();
float len = sqrtf(dx*dx+dy*dy);
float dt = _ga_t0->time()-_ga_t1->time();
return (len>dt*velocity);
}
void TestManipulator::flushMouseEventStack()
{
_ga_t1 = NULL;
_ga_t0 = NULL;
}
void TestManipulator::addMouseEvent(const GUIEventAdapter& ea)
{
_ga_t1 = _ga_t0;
_ga_t0 = &ea;
}
void TestManipulator::computeLocalDataFromCamera()
{
// maths from gluLookAt/osg::Matrix::makeLookAt
osg::Vec3 f(_camera->getCenterPoint()-_camera->getEyePoint());
f.normalize();
osg::Vec3 s(f^_camera->getUpVector());
s.normalize();
osg::Vec3 u(s^f);
u.normalize();
osg::Matrix rotation_matrix(s[0], u[0], -f[0], 0.0f,
s[1], u[1], -f[1], 0.0f,
s[2], u[2], -f[2], 0.0f,
0.0f, 0.0f, 0.0f, 1.0f);
_center = _camera->getCenterPoint();
_distance = _camera->getLookDistance();
_rotation.set(rotation_matrix);
_rotation = _rotation.inverse();
}
void TestManipulator::computeCameraFromLocalData()
{
osg::Matrix new_rotation;
new_rotation.makeRotate(_rotation);
osg::Vec3 up = osg::Vec3(0.0f,1.0f,0.0) * new_rotation;
osg::Vec3 eye = (osg::Vec3(0.0f,0.0f,_distance) * new_rotation) + _center;
_camera->setLookAt(eye,_center,up);
}
bool TestManipulator::calcMovement()
{
// return if less then two events have been added.
if (_ga_t0.get()==NULL || _ga_t1.get()==NULL) return false;
float dx = _ga_t0->getXnormalized()-_ga_t1->getXnormalized();
float dy = _ga_t0->getYnormalized()-_ga_t1->getYnormalized();
// return if there is no movement.
if (dx==0 && dy==0) return false;
unsigned int buttonMask = _ga_t1->getButtonMask();
if (buttonMask==GUIEventAdapter::LEFT_MOUSE_BUTTON)
{
// rotate camera.
osg::Quat new_rotate;
new_rotate.makeRotate(dx / 3.0f, osg::Vec3(0.0f, 0.0f, 1.0f));
_rotation = _rotation*new_rotate;
computeCameraFromLocalData();
return true;
}
else if (buttonMask==GUIEventAdapter::MIDDLE_MOUSE_BUTTON)
{
// pan model.
osg::Vec3 dv = osg::Vec3(0.0f, 0.0f, -500.0f) * dy;
_center += dv;
computeCameraFromLocalData();
return true;
}
else if (buttonMask==GUIEventAdapter::RIGHT_MOUSE_BUTTON)
{
osg::Vec3 uv = _camera->getUpVector();
osg::Vec3 sv = _camera->getSideVector();
osg::Vec3 fv = uv ^ sv;
osg::Vec3 dv = fv*(dy*-500.0f)-sv*(dx*500.0f);
_center += dv;
computeCameraFromLocalData();
return true;
}
return false;
}
/*
* This size should really be based on the distance from the center of
* rotation to the point on the object underneath the mouse. That
* point would then track the mouse as closely as possible. This is a
* simple example, though, so that is left as an Exercise for the
* Programmer.
*/
const float TRACKBALLSIZE = 0.8f;
/*
* Ok, simulate a track-ball. Project the points onto the virtual
* trackball, then figure out the axis of rotation, which is the cross
* product of P1 P2 and O P1 (O is the center of the ball, 0,0,0)
* Note: This is a deformed trackball-- is a trackball in the center,
* but is deformed into a hyperbolic sheet of rotation away from the
* center. This particular function was chosen after trying out
* several variations.
*
* It is assumed that the arguments to this routine are in the range
* (-1.0 ... 1.0)
*/
void TestManipulator::trackball(osg::Vec3& axis,float& angle, float p1x, float p1y, float p2x, float p2y)
{
/*
* First, figure out z-coordinates for projection of P1 and P2 to
* deformed sphere
*/
osg::Vec3 uv = _camera->getUpVector();
osg::Vec3 sv = _camera->getSideVector();
osg::Vec3 lv = _camera->getLookVector();
osg::Vec3 p1 = sv*p1x+uv*p1y-lv*tb_project_to_sphere(TRACKBALLSIZE,p1x,p1y);
osg::Vec3 p2 = sv*p2x+uv*p2y-lv*tb_project_to_sphere(TRACKBALLSIZE,p2x,p2y);
/*
* Now, we want the cross product of P1 and P2
*/
axis = p2^p1;
axis.normalize();
/*
* Figure out how much to rotate around that axis.
*/
float t = (p2-p1).length() / (2.0*TRACKBALLSIZE);
/*
* Avoid problems with out-of-control values...
*/
if (t > 1.0) t = 1.0;
if (t < -1.0) t = -1.0;
angle = inRadians(asin(t));
}
/*
* Project an x,y pair onto a sphere of radius r OR a hyperbolic sheet
* if we are away from the center of the sphere.
*/
float TestManipulator::tb_project_to_sphere(float r, float x, float y)
{
float d, t, z;
d = sqrt(x*x + y*y);
/* Inside sphere */
if (d < r * 0.70710678118654752440)
{
z = sqrt(r*r - d*d);
} /* On hyperbola */
else
{
t = r / 1.41421356237309504880;
z = t*t / d;
}
return z;
}