OpenSceneGraph/include/osg/Vec4
2002-07-16 20:07:32 +00:00

235 lines
6.9 KiB
Plaintext

//C++ header - Open Scene Graph - Copyright (C) 1998-2002 Robert Osfield
//Distributed under the terms of the GNU Library General Public License (LGPL)
//as published by the Free Software Foundation.
#ifndef OSG_VEC4
#define OSG_VEC4 1
#include <osg/Vec3>
#include <iostream>
namespace osg {
/** General purpose float quad, uses include representation
of colour coordinates.
No support yet added for float * Vec4 - is it necessary?
Need to define a non-member non-friend operator* etc.
Vec4 * float is okay
*/
class Vec4
{
public:
// Methods are defined here so that they are implicitly inlined
Vec4() { _v[0]=0.0f; _v[1]=0.0f; _v[2]=0.0f; _v[3]=0.0f;}
Vec4(float x, float y, float z, float w)
{
_v[0]=x;
_v[1]=y;
_v[2]=z;
_v[3]=w;
}
Vec4(const Vec3& v3,float w)
{
_v[0]=v3[0];
_v[1]=v3[1];
_v[2]=v3[2];
_v[3]=w;
}
float _v[4];
inline const bool operator == (const Vec4& v) const { return _v[0]==v._v[0] && _v[1]==v._v[1] && _v[2]==v._v[2] && _v[3]==v._v[3]; }
inline const bool operator != (const Vec4& v) const { return _v[0]!=v._v[0] || _v[1]!=v._v[1] || _v[2]!=v._v[2] || _v[3]!=v._v[3]; }
inline const bool operator < (const Vec4& v) const
{
if (_v[0]<v._v[0]) return true;
else if (_v[0]>v._v[0]) return false;
else if (_v[1]<v._v[1]) return true;
else if (_v[1]>v._v[1]) return false;
else if (_v[2]<v._v[2]) return true;
else if (_v[2]>v._v[2]) return false;
else return (_v[3]<v._v[3]);
}
inline float* ptr() { return _v; }
inline const float* ptr() const { return _v; }
inline void set( float x, float y, float z, float w)
{
_v[0]=x; _v[1]=y; _v[2]=z; _v[3]=w;
}
inline float& operator [] (const int i) { return _v[i]; }
inline float operator [] (const int i) const { return _v[i]; }
inline float& x() { return _v[0]; }
inline float& y() { return _v[1]; }
inline float& z() { return _v[2]; }
inline float& w() { return _v[3]; }
inline float x() const { return _v[0]; }
inline float y() const { return _v[1]; }
inline float z() const { return _v[2]; }
inline float w() const { return _v[3]; }
inline unsigned long asABGR() const
{
return (unsigned long)clampTo((_v[0]*255.0f),0.0f,255.0f)<<24 |
(unsigned long)clampTo((_v[1]*255.0f),0.0f,255.0f)<<16 |
(unsigned long)clampTo((_v[2]*255.0f),0.0f,255.0f)<<8 |
(unsigned long)clampTo((_v[3]*255.0f),0.0f,255.0f);
}
inline const unsigned long asRGBA() const
{
return (unsigned long)clampTo((_v[3]*255.0f),0.0f,255.0f)<<24 |
(unsigned long)clampTo((_v[2]*255.0f),0.0f,255.0f)<<16 |
(unsigned long)clampTo((_v[1]*255.0f),0.0f,255.0f)<<8 |
(unsigned long)clampTo((_v[0]*255.0f),0.0f,255.0f);
}
inline const bool valid() const { return !isNaN(); }
inline const bool isNaN() const { return osg::isNaN(_v[0]) || osg::isNaN(_v[1]) || osg::isNaN(_v[2]) || osg::isNaN(_v[3]); }
/// dot product
inline float operator * (const Vec4& rhs) const
{
return _v[0]*rhs._v[0]+
_v[1]*rhs._v[1]+
_v[2]*rhs._v[2]+
_v[3]*rhs._v[3] ;
}
/// multiply by scalar
inline Vec4 operator * (const float rhs) const
{
return Vec4(_v[0]*rhs, _v[1]*rhs, _v[2]*rhs, _v[3]*rhs);
}
/// unary multiply by scalar
inline Vec4& operator *= (const float rhs)
{
_v[0]*=rhs;
_v[1]*=rhs;
_v[2]*=rhs;
_v[3]*=rhs;
return *this;
}
/// divide by scalar
inline Vec4 operator / (const float rhs) const
{
return Vec4(_v[0]/rhs, _v[1]/rhs, _v[2]/rhs, _v[3]/rhs);
}
/// unary divide by scalar
inline Vec4& operator /= (const float rhs)
{
_v[0]/=rhs;
_v[1]/=rhs;
_v[2]/=rhs;
_v[3]/=rhs;
return *this;
}
/// binary vector add
inline Vec4 operator + (const Vec4& rhs) const
{
return Vec4(_v[0]+rhs._v[0], _v[1]+rhs._v[1],
_v[2]+rhs._v[2], _v[3]+rhs._v[3]);
}
/** unary vector add. Slightly more efficient because no temporary
intermediate object*/
inline Vec4& operator += (const Vec4& rhs)
{
_v[0] += rhs._v[0];
_v[1] += rhs._v[1];
_v[2] += rhs._v[2];
_v[3] += rhs._v[3];
return *this;
}
/// binary vector subtract
inline Vec4 operator - (const Vec4& rhs) const
{
return Vec4(_v[0]-rhs._v[0], _v[1]-rhs._v[1],
_v[2]-rhs._v[2], _v[3]-rhs._v[3] );
}
/// unary vector subtract
inline Vec4& operator -= (const Vec4& rhs)
{
_v[0]-=rhs._v[0];
_v[1]-=rhs._v[1];
_v[2]-=rhs._v[2];
_v[3]-=rhs._v[3];
return *this;
}
/// negation operator. Returns the negative of the Vec4
inline const Vec4 operator - () const
{
return Vec4 (-_v[0], -_v[1], -_v[2], -_v[3]);
}
/// Length of the vector = sqrt( vec . vec )
inline const float length() const
{
return sqrtf( _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] + _v[3]*_v[3]);
}
/// Length squared of the vector = vec . vec
inline const float length2() const
{
return _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] + _v[3]*_v[3];
}
/** normalize the vector so that it has length unity
returns the previous length of the vector*/
inline const float normalize()
{
float norm = Vec4::length();
_v[0] /= norm;
_v[1] /= norm;
_v[2] /= norm;
_v[3] /= norm;
return( norm );
}
friend inline std::ostream& operator << (std::ostream& output, const Vec4& vec)
{
output << vec._v[0] << " "
<< vec._v[1] << " "
<< vec._v[2] << " "
<< vec._v[3];
return output; // to enable cascading
}
}; // end of class Vec4
/** Compute the dot product of a (Vec3,1.0) and a Vec4.*/
inline float operator * (const Vec3& lhs,const Vec4& rhs)
{
return lhs[0]*rhs[0]+lhs[1]*rhs[1]+lhs[2]*rhs[2]+rhs[3];
}
/** Compute the dot product of a Vec4 and a (Vec3,1.0).*/
inline float operator * (const Vec4& lhs,const Vec3& rhs)
{
return lhs[0]*rhs[0]+lhs[1]*rhs[1]+lhs[2]*rhs[2]+lhs[3];
}
} // end of namespace osg
#endif