OpenSceneGraph/include/osg/Matrix
Robert Osfield f612924a45 Added support for shallow and deep copy of nodes, drawables and state, via a
copy constructor which takes an optional Cloner object, and the old
osg::Object::clone() has changed so that it now requires a Cloner as paramter.
This is passed on to the copy constructor to help control the shallow vs
deep copying.  The old functionality of clone() which was clone of type has
been renamed to cloneType().

Updated all of the OSG to work with these new conventions, implemention all
the required copy constructors etc.  A couple of areas will do shallow
copies by design, a couple of other still need to be updated to do either
shallow or deep.

Neither of the shallow or deep copy operations have been tested yet, only
the old functionality of the OSG has been checked so far, such running the
viewer on various demo datasets.

Also fixed a problem in osg::Optimize::RemoveRendundentNodesVisitor which
was not checking that Group didn't have have any attached StateSet's, Callbacks
or UserData.  These checks have now been added, which fixes a bug which was
revealled by the new osgscribe demo, this related to removal of group acting
as state decorator.

method
2002-01-28 21:17:01 +00:00

295 lines
9.5 KiB
Plaintext

//C++ header - Open Scene Graph - Copyright (C) 1998-2001 Robert Osfield
//Distributed under the terms of the GNU Library General Public License (LGPL)
//as published by the Free Software Foundation.
#ifndef OSG_MATRIX
#define OSG_MATRIX 1
#include <osg/Object>
#include <osg/Vec3>
#include <osg/Vec4>
#include <iostream>
namespace osg {
class Quat;
class SG_EXPORT Matrix : public Object
{
public:
Matrix();
Matrix( const Matrix& other);
explicit Matrix( float const * const def );
Matrix( float a00, float a01, float a02, float a03,
float a10, float a11, float a12, float a13,
float a20, float a21, float a22, float a23,
float a30, float a31, float a32, float a33);
virtual Object* cloneType() const { return new Matrix(); } \
virtual Object* clone(const Cloner&) const { return new Matrix(*this); } \
virtual bool isSameKindAs(const Object* obj) const { return dynamic_cast<const Matrix*>(obj)!=NULL; } \
virtual const char* className() const { return "Matrix"; }
virtual ~Matrix() {}
Matrix& operator = (const Matrix& );
int compare(const Matrix& m) const { ensureRealized(); m.ensureRealized(); return memcmp(_mat,m._mat,sizeof(_mat)); }
bool operator < (const Matrix& m) const { return compare(m)<0; }
bool operator == (const Matrix& m) const { return compare(m)==0; }
bool operator != (const Matrix& m) const { return compare(m)!=0; }
inline float& operator()(int row, int col) { ensureRealized(); return _mat[row][col]; }
inline float operator()(int row, int col) const { ensureRealized(); return _mat[row][col]; }
void set( float const * const );
void set( float a00, float a01, float a02, float a03,
float a10, float a11, float a12, float a13,
float a20, float a21, float a22, float a23,
float a30, float a31, float a32, float a33);
float * ptr() { ensureRealized(); return (float *)_mat; }
const float * ptr() const { ensureRealized(); return (const float *)_mat; }
inline void ensureRealized() const { if (!fully_realized) const_cast<Matrix*>(this)->makeIdentity();}
void makeIdentity();
void makeScale( const Vec3& );
void makeScale( float, float, float );
void makeTranslate( const Vec3& );
void makeTranslate( float, float, float );
void makeRotate( const Vec3& from, const Vec3& to );
void makeRotate( float angle, const Vec3& axis );
void makeRotate( float angle, float x, float y, float z );
void makeRotate( const Quat& );
void makeRotate( float, float, float ); //Euler angles
bool invert( const Matrix& );
bool invertAffine( const Matrix& );
//basic utility functions to create new matrices
inline static Matrix identity( void );
inline static Matrix scale( const Vec3& );
inline static Matrix scale( float, float, float );
inline static Matrix translate( const Vec3& );
inline static Matrix translate( float, float, float );
inline static Matrix rotate( const Vec3&, const Vec3& );
inline static Matrix rotate( float, float, float, float );
inline static Matrix rotate( float angle, const Vec3& axis);
inline static Matrix rotate( const Quat& );
inline Vec3 preMult( const Vec3& v ) const;
inline Vec3 postMult( const Vec3& v ) const;
inline Vec3 operator* ( const Vec3& v ) const;
inline Vec4 preMult( const Vec4& v ) const;
inline Vec4 postMult( const Vec4& v ) const;
inline Vec4 operator* ( const Vec4& v ) const;
void setTrans( float tx, float ty, float tz );
void setTrans( const Vec3& v );
Vec3 getTrans() const { ensureRealized(); return Vec3(_mat[3][0],_mat[3][1],_mat[3][2]); }
/** apply apply an 3x3 transform of v*M[0..2,0..2] */
inline static Vec3 transform3x3(const Vec3& v,const Matrix& m);
/** apply apply an 3x3 transform of M[0..2,0..2]*v */
inline static Vec3 transform3x3(const Matrix& m,const Vec3& v);
// basic Matrix multiplication, our workhorse methods.
void mult( const Matrix&, const Matrix& );
void preMult( const Matrix& );
void postMult( const Matrix& );
inline void operator *= ( const Matrix& other )
{ if( this == &other ) {
Matrix temp(other);
postMult( temp );
}
else postMult( other );
}
inline Matrix operator * ( const Matrix &m ) const
{
osg::Matrix r;
r.mult(*this,m);
return r;
}
// temporarily commented out while waiting for a more generic implementation
// of MatrixProduct proxy class.
// // Helper class to optimize product expressions somewhat
// class MatrixProduct {
// public:
// const Matrix& A;
// const Matrix& B;
//
// MatrixProduct( const Matrix& lhs, const Matrix& rhs ) : A(lhs), B(rhs) {}
// };
//
// inline MatrixProduct operator * ( const Matrix& other ) const
// { return MatrixProduct(*this, other); }
//
// inline void operator = ( const MatrixProduct& p )
// {
// if( this == &(p.A)) postMult(p.B);
// else if( this == &(p.B)) preMult(p.A);
// else mult( p.A, p.B );
// }
//
// Matrix( const MatrixProduct& p ) //allows implicit evaluation of the product
// { mult( p.A, p.B ); }
private:
float _mat[4][4];
bool fully_realized;
};
//static utility methods
inline Matrix Matrix::identity(void)
{
Matrix m;
m.makeIdentity();
return m;
}
inline Matrix Matrix::scale(float sx, float sy, float sz)
{
Matrix m;
m.makeScale(sx,sy,sz);
return m;
}
inline Matrix Matrix::scale(const Vec3& v )
{
return scale(v.x(), v.y(), v.z() );
}
inline Matrix Matrix::translate(float tx, float ty, float tz)
{
Matrix m;
m.makeTranslate(tx,ty,tz);
return m;
}
inline Matrix Matrix::translate(const Vec3& v )
{
return translate(v.x(), v.y(), v.z() );
}
inline Matrix Matrix::rotate( const Quat& q )
{
Matrix m;
m.makeRotate( q );
return m;
}
inline Matrix Matrix::rotate(float angle, float x, float y, float z )
{
Matrix m;
m.makeRotate(angle,x,y,z);
return m;
}
inline Matrix Matrix::rotate(float angle, const Vec3& axis )
{
Matrix m;
m.makeRotate(angle,axis);
return m;
}
inline Matrix Matrix::rotate(const Vec3& from, const Vec3& to )
{
Matrix m;
m.makeRotate(from,to);
return m;
}
inline Vec3 Matrix::postMult( const Vec3& v ) const
{
float d = 1.0f/(_mat[3][0]*v.x()+_mat[3][1]*v.y()+_mat[3][2]*v.z()+_mat[3][3]) ;
return Vec3( (_mat[0][0]*v.x() + _mat[0][1]*v.y() + _mat[0][2]*v.z() + _mat[0][3])*d,
(_mat[1][0]*v.x() + _mat[1][1]*v.y() + _mat[1][2]*v.z() + _mat[1][3])*d,
(_mat[2][0]*v.x() + _mat[2][1]*v.y() + _mat[2][2]*v.z() + _mat[2][3])*d) ;
}
inline Vec3 Matrix::preMult( const Vec3& v ) const
{
float d = 1.0f/(_mat[0][3]*v.x()+_mat[1][3]*v.y()+_mat[2][3]*v.z()+_mat[3][3]) ;
return Vec3( (_mat[0][0]*v.x() + _mat[1][0]*v.y() + _mat[2][0]*v.z() + _mat[3][0])*d,
(_mat[0][1]*v.x() + _mat[1][1]*v.y() + _mat[2][1]*v.z() + _mat[3][1])*d,
(_mat[0][2]*v.x() + _mat[1][2]*v.y() + _mat[2][2]*v.z() + _mat[3][2])*d);
}
inline Vec4 Matrix::postMult( const Vec4& v ) const
{
return Vec4( (_mat[0][0]*v.x() + _mat[0][1]*v.y() + _mat[0][2]*v.z() + _mat[0][3]*v.w()),
(_mat[1][0]*v.x() + _mat[1][1]*v.y() + _mat[1][2]*v.z() + _mat[1][3]*v.w()),
(_mat[2][0]*v.x() + _mat[2][1]*v.y() + _mat[2][2]*v.z() + _mat[2][3]*v.w()),
(_mat[3][0]*v.x() + _mat[3][1]*v.y() + _mat[3][2]*v.z() + _mat[3][3]*v.w())) ;
}
inline Vec4 Matrix::preMult( const Vec4& v ) const
{
return Vec4( (_mat[0][0]*v.x() + _mat[1][0]*v.y() + _mat[2][0]*v.z() + _mat[3][0]*v.w()),
(_mat[0][1]*v.x() + _mat[1][1]*v.y() + _mat[2][1]*v.z() + _mat[3][1]*v.w()),
(_mat[0][2]*v.x() + _mat[1][2]*v.y() + _mat[2][2]*v.z() + _mat[3][2]*v.w()),
(_mat[0][3]*v.x() + _mat[1][3]*v.y() + _mat[2][3]*v.z() + _mat[3][3]*v.w()));
}
inline Vec3 Matrix::transform3x3(const Vec3& v,const Matrix& m)
{
return Vec3( (m._mat[0][0]*v.x() + m._mat[1][0]*v.y() + m._mat[2][0]*v.z()),
(m._mat[0][1]*v.x() + m._mat[1][1]*v.y() + m._mat[2][1]*v.z()),
(m._mat[0][2]*v.x() + m._mat[1][2]*v.y() + m._mat[2][2]*v.z()));
}
inline Vec3 Matrix::transform3x3(const Matrix& m,const Vec3& v)
{
return Vec3( (m._mat[0][0]*v.x() + m._mat[0][1]*v.y() + m._mat[0][2]*v.z()),
(m._mat[1][0]*v.x() + m._mat[1][1]*v.y() + m._mat[1][2]*v.z()),
(m._mat[2][0]*v.x() + m._mat[2][1]*v.y() + m._mat[2][2]*v.z()) ) ;
}
inline Vec3 operator* (const Vec3& v, const Matrix& m )
{
return m.preMult(v);
}
inline Vec4 operator* (const Vec4& v, const Matrix& m )
{
return m.preMult(v);
}
inline Vec3 Matrix::operator* (const Vec3& v) const
{
return postMult(v);
}
inline Vec4 Matrix::operator* (const Vec4& v) const
{
return postMult(v);
}
inline std::ostream& operator<< (std::ostream& os, const Matrix& m )
{
os << "{"<<std::endl;
for(int row=0; row<4; ++row) {
os << "\t";
for(int col=0; col<4; ++col)
os << m(row,col) << " ";
os << std::endl;
}
os << "}" << std::endl;
return os;
}
}; //namespace osg
#endif