OpenSceneGraph/src/osgUtil/IntersectVisitor.cpp
2014-07-31 18:29:31 +00:00

853 lines
22 KiB
C++

/* -*-c++-*- OpenSceneGraph - Copyright (C) 1998-2006 Robert Osfield
*
* This library is open source and may be redistributed and/or modified under
* the terms of the OpenSceneGraph Public License (OSGPL) version 0.0 or
* (at your option) any later version. The full license is in LICENSE file
* included with this distribution, and on the openscenegraph.org website.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* OpenSceneGraph Public License for more details.
*/
#include <osgUtil/IntersectVisitor>
#include <osg/Transform>
#include <osg/Geode>
#include <osg/LOD>
#include <osg/Billboard>
#include <osg/Notify>
#include <osg/TriangleFunctor>
#include <osg/Geometry>
#include <osg/Projection>
#include <osg/Camera>
#include <osg/io_utils>
#include <float.h>
#include <algorithm>
#include <map>
using namespace osg;
using namespace osgUtil;
Hit::Hit():
_ratio(0.0f),
_primitiveIndex(0)
{
}
Hit::Hit(const Hit& hit)
{
// copy data across.
_ratio = hit._ratio;
_originalLineSegment = hit._originalLineSegment;
_localLineSegment = hit._localLineSegment;
_nodePath = hit._nodePath;
_geode = hit._geode;
_drawable = hit._drawable;
_matrix = hit._matrix;
_inverse = hit._inverse;
_vecIndexList = hit._vecIndexList;
_primitiveIndex = hit._primitiveIndex;
_intersectPoint = hit._intersectPoint;
_intersectNormal = hit._intersectNormal;
}
Hit::~Hit()
{
}
Hit& Hit::operator = (const Hit& hit)
{
if (&hit==this) return *this;
_matrix = hit._matrix;
_inverse = hit._inverse;
_originalLineSegment = hit._originalLineSegment;
_localLineSegment = hit._localLineSegment;
// copy data across.
_ratio = hit._ratio;
_nodePath = hit._nodePath;
_geode = hit._geode;
_drawable = hit._drawable;
_vecIndexList = hit._vecIndexList;
_primitiveIndex = hit._primitiveIndex;
_intersectPoint = hit._intersectPoint;
_intersectNormal = hit._intersectNormal;
return *this;
}
const osg::Vec3 Hit::getWorldIntersectNormal() const
{
if (_inverse.valid())
{
osg::Vec3 norm = osg::Matrix::transform3x3(*_inverse,_intersectNormal);
norm.normalize();
return norm;
}
else return _intersectNormal;
}
IntersectVisitor::IntersectState::IntersectState()
{
_segmentMaskStack.push_back(0xffffffff);
}
IntersectVisitor::IntersectState::~IntersectState()
{
}
bool IntersectVisitor::IntersectState::isCulled(const BoundingSphere& bs,LineSegmentMask& segMaskOut)
{
bool hit = false;
LineSegmentMask mask = 0x00000001;
segMaskOut = 0x00000000;
LineSegmentMask segMaskIn = _segmentMaskStack.back();
for(IntersectState::LineSegmentList::iterator sitr=_segList.begin();
sitr!=_segList.end();
++sitr)
{
if ((segMaskIn & mask) && (sitr->second)->intersect(bs))
{
segMaskOut = segMaskOut| mask;
hit = true;
}
mask = mask << 1;
}
return !hit;
}
bool IntersectVisitor::IntersectState::isCulled(const BoundingBox& bb,LineSegmentMask& segMaskOut)
{
bool hit = false;
LineSegmentMask mask = 0x00000001;
segMaskOut = 0x00000000;
LineSegmentMask segMaskIn = _segmentMaskStack.back();
for(IntersectState::LineSegmentList::iterator sitr=_segList.begin();
sitr!=_segList.end();
++sitr)
{
if ((segMaskIn & mask) && (sitr->second)->intersect(bb))
{
segMaskOut = segMaskOut| mask;
hit = true;
}
mask = mask << 1;
}
return !hit;
}
void IntersectVisitor::IntersectState::addLineSegment(osg::LineSegment* seg)
{
// create a new segment transformed to local coordintes.
LineSegment* ns = new LineSegment;
if (_model_inverse.valid())
{
if (_view_inverse.valid())
{
osg::Matrix matrix = (*(_view_inverse)) * (*(_model_inverse));
ns->mult(*seg,matrix);
}
else
{
ns->mult(*seg,*(_model_inverse));
}
}
else if (_view_inverse.valid())
{
ns->mult(*seg,*(_view_inverse));
}
else
{
*ns = *seg;
}
_segList.push_back(LineSegmentPair(seg,ns));
}
IntersectVisitor::IntersectVisitor():
osg::NodeVisitor(osg::NodeVisitor::INTERSECTION_VISITOR, osg::NodeVisitor::TRAVERSE_ACTIVE_CHILDREN)
{
// override the default node visitor mode.
setTraversalMode(NodeVisitor::TRAVERSE_ACTIVE_CHILDREN);
// Initialize eyepoint to 0,0,0
setEyePoint(Vec3(0.0f,0.0f,0.0f));
setLODSelectionMode(USE_HIGHEST_LEVEL_OF_DETAIL); // original IntersectVisitor behavior
//setLODSelectionMode(USE_SEGMENT_START_POINT_AS_EYE_POINT_FOR_LOD_LEVEL_SELECTION);
reset();
}
IntersectVisitor::~IntersectVisitor()
{
}
void IntersectVisitor::reset()
{
_intersectStateStack.clear();
// create a empty IntersectState on the the intersectStateStack.
_intersectStateStack.push_back(new IntersectState);
_segHitList.clear();
}
float IntersectVisitor::getDistanceToEyePoint(const Vec3& pos, bool /*withLODScale*/) const
{
if (_lodSelectionMode==USE_SEGMENT_START_POINT_AS_EYE_POINT_FOR_LOD_LEVEL_SELECTION)
{
// OSG_NOTICE<<"IntersectVisitor::getDistanceToEyePoint)"<<(pos-getEyePoint()).length()<<std::endl;
// LODScale is not available to IntersectVisitor, so we ignore the withLODScale argument
//if (withLODScale) return (pos-getEyePoint()).length()*getLODScale();
//else return (pos-getEyePoint()).length();
return (pos-getEyePoint()).length();
}
else
{
return 0.0f;
}
}
bool IntersectVisitor::hits()
{
for(LineSegmentHitListMap::iterator itr = _segHitList.begin();
itr != _segHitList.end();
++itr)
{
if (!(itr->second.empty())) return true;
}
return false;
}
osg::Vec3 IntersectVisitor::getEyePoint() const
{
const IntersectState* cis = _intersectStateStack.empty() ? 0 : _intersectStateStack.back().get();
if (cis && (cis->_model_inverse.valid() || cis->_view_inverse.valid()))
{
osg::Vec3 eyePoint = _pseudoEyePoint;
if (cis->_view_inverse.valid()) eyePoint = eyePoint * (*(cis->_view_inverse));
if (cis->_model_inverse.valid()) eyePoint = eyePoint * (*(cis->_model_inverse));
//OSG_NOTICE<<"IntersectVisitor::getEyePoint()"<<eyePoint<<std::endl;
return eyePoint;
}
else
{
return _pseudoEyePoint;
}
}
void IntersectVisitor::addLineSegment(LineSegment* seg)
{
if (!seg) return;
if (!seg->valid())
{
OSG_WARN<<"Warning: invalid line segment passed to IntersectVisitor::addLineSegment(..)"<<std::endl;
OSG_WARN<<" "<<seg->start()<<" "<<seg->end()<<" segment ignored.."<< std::endl;
return;
}
IntersectState* cis = _intersectStateStack.back().get();
if (cis->_segList.size()>=32)
{
OSG_WARN<<"Warning: excessive number of line segmenets passed to IntersectVisitor::addLineSegment(..), maximum permitted is 32 line segments."<<std::endl;
OSG_WARN<<" "<<seg->start()<<" "<<seg->end()<<" segment ignored.."<< std::endl;
return;
}
setEyePoint(seg->start()); // set start of line segment to be pseudo EyePoint for billboarding and LOD purposes
// first check to see if segment has already been added.
for(IntersectState::LineSegmentList::iterator itr = cis->_segList.begin();
itr != cis->_segList.end();
++itr)
{
if (itr->first == seg) return;
}
cis->addLineSegment(seg);
}
void IntersectVisitor::pushMatrix(RefMatrix* matrix, osg::Transform::ReferenceFrame rf)
{
IntersectState* nis = new IntersectState;
IntersectState* cis = _intersectStateStack.back().get();
if (rf == osg::Transform::RELATIVE_RF)
{
// share the original view matrix
nis->_view_matrix = cis->_view_matrix;
nis->_view_inverse = cis->_view_inverse;
// set up new model matrix
nis->_model_matrix = matrix;
if (cis->_model_matrix.valid())
{
nis->_model_matrix->postMult(*(cis->_model_matrix));
}
RefMatrix* inverse_world = new RefMatrix;
inverse_world->invert(*(nis->_model_matrix));
nis->_model_inverse = inverse_world;
}
else
{
// set a new view matrix
nis->_view_matrix = matrix;
RefMatrix* inverse_world = new RefMatrix;
inverse_world->invert(*(nis->_view_matrix));
nis->_view_inverse = inverse_world;
// model matrix now blank.
nis->_model_matrix = 0;
nis->_model_inverse = 0;
}
IntersectState::LineSegmentMask segMaskIn = cis->_segmentMaskStack.back();
IntersectState::LineSegmentMask mask = 0x00000001;
for(IntersectState::LineSegmentList::iterator sitr=cis->_segList.begin();
sitr!=cis->_segList.end();
++sitr)
{
if ((segMaskIn & mask))
{
nis->addLineSegment(sitr->first.get());
}
mask = mask << 1;
}
_intersectStateStack.push_back(nis);
}
void IntersectVisitor::popMatrix()
{
if (!_intersectStateStack.empty())
{
_intersectStateStack.pop_back();
}
}
bool IntersectVisitor::enterNode(Node& node)
{
const BoundingSphere& bs = node.getBound();
if (bs.valid() && node.isCullingActive())
{
IntersectState* cis = _intersectStateStack.back().get();
IntersectState::LineSegmentMask sm=0xffffffff;
if (cis->isCulled(bs,sm)) return false;
cis->_segmentMaskStack.push_back(sm);
return true;
}
else
{
IntersectState* cis = _intersectStateStack.back().get();
if (!cis->_segmentMaskStack.empty())
cis->_segmentMaskStack.push_back(cis->_segmentMaskStack.back());
else
cis->_segmentMaskStack.push_back(0xffffffff);
return true;
}
}
void IntersectVisitor::leaveNode()
{
IntersectState* cis = _intersectStateStack.back().get();
cis->_segmentMaskStack.pop_back();
}
void IntersectVisitor::apply(Node& node)
{
if (!enterNode(node)) return;
traverse(node);
leaveNode();
}
struct TriangleHit
{
TriangleHit(unsigned int index, const osg::Vec3& normal, float r1, const osg::Vec3* v1, float r2, const osg::Vec3* v2, float r3, const osg::Vec3* v3):
_index(index),
_normal(normal),
_r1(r1),
_v1(v1),
_r2(r2),
_v2(v2),
_r3(r3),
_v3(v3) {}
unsigned int _index;
const osg::Vec3 _normal;
float _r1;
const osg::Vec3* _v1;
float _r2;
const osg::Vec3* _v2;
float _r3;
const osg::Vec3* _v3;
protected:
TriangleHit& operator = (const TriangleHit&) { return *this; }
};
struct TriangleIntersect
{
osg::ref_ptr<LineSegment> _seg;
Vec3 _s;
Vec3 _d;
float _length;
int _index;
float _ratio;
bool _hit;
typedef std::multimap<float,TriangleHit> TriangleHitList;
TriangleHitList _thl;
TriangleIntersect():
_length(0.0f),
_index(0),
_ratio(0.0f),
_hit(false)
{
}
TriangleIntersect(const LineSegment& seg,float ratio=FLT_MAX)
{
set(seg,ratio);
}
void set(const LineSegment& seg,float ratio=FLT_MAX)
{
_seg=new LineSegment(seg);
_hit=false;
_index = 0;
_ratio = ratio;
_s = _seg->start();
_d = _seg->end()-_seg->start();
_length = _d.length();
_d /= _length;
}
// bool intersect(const Vec3& v1,const Vec3& v2,const Vec3& v3,float& r)
inline void operator () (const Vec3& v1,const Vec3& v2,const Vec3& v3, bool treatVertexDataAsTemporary)
{
++_index;
if (v1==v2 || v2==v3 || v1==v3) return;
Vec3 v12 = v2-v1;
Vec3 n12 = v12^_d;
float ds12 = (_s-v1)*n12;
float d312 = (v3-v1)*n12;
if (d312>=0.0f)
{
if (ds12<0.0f) return;
if (ds12>d312) return;
}
else // d312 < 0
{
if (ds12>0.0f) return;
if (ds12<d312) return;
}
Vec3 v23 = v3-v2;
Vec3 n23 = v23^_d;
float ds23 = (_s-v2)*n23;
float d123 = (v1-v2)*n23;
if (d123>=0.0f)
{
if (ds23<0.0f) return;
if (ds23>d123) return;
}
else // d123 < 0
{
if (ds23>0.0f) return;
if (ds23<d123) return;
}
Vec3 v31 = v1-v3;
Vec3 n31 = v31^_d;
float ds31 = (_s-v3)*n31;
float d231 = (v2-v3)*n31;
if (d231>=0.0f)
{
if (ds31<0.0f) return;
if (ds31>d231) return;
}
else // d231 < 0
{
if (ds31>0.0f) return;
if (ds31<d231) return;
}
float r3;
if (ds12==0.0f) r3=0.0f;
else if (d312!=0.0f) r3 = ds12/d312;
else return; // the triangle and the line must be parallel intersection.
float r1;
if (ds23==0.0f) r1=0.0f;
else if (d123!=0.0f) r1 = ds23/d123;
else return; // the triangle and the line must be parallel intersection.
float r2;
if (ds31==0.0f) r2=0.0f;
else if (d231!=0.0f) r2 = ds31/d231;
else return; // the triangle and the line must be parallel intersection.
float total_r = (r1+r2+r3);
if (total_r!=1.0f)
{
if (total_r==0.0f) return; // the triangle and the line must be parallel intersection.
float inv_total_r = 1.0f/total_r;
r1 *= inv_total_r;
r2 *= inv_total_r;
r3 *= inv_total_r;
}
Vec3 in = v1*r1+v2*r2+v3*r3;
if (!in.valid())
{
OSG_WARN<<"Warning:: Picked up error in TriangleIntersect"<<std::endl;
OSG_WARN<<" ("<<v1<<",\t"<<v2<<",\t"<<v3<<")"<<std::endl;
OSG_WARN<<" ("<<r1<<",\t"<<r2<<",\t"<<r3<<")"<<std::endl;
return;
}
float d = (in-_s)*_d;
if (d<0.0f) return;
if (d>_length) return;
osg::Vec3 normal = v12^v23;
normal.normalize();
float r = d/_length;
if (treatVertexDataAsTemporary)
{
_thl.insert(std::pair<const float,TriangleHit>(r,TriangleHit(_index-1,normal,r1,0,r2,0,r3,0)));
}
else
{
_thl.insert(std::pair<const float,TriangleHit>(r,TriangleHit(_index-1,normal,r1,&v1,r2,&v2,r3,&v3)));
}
_hit = true;
}
};
bool IntersectVisitor::intersect(Drawable& drawable)
{
bool hitFlag = false;
IntersectState* cis = _intersectStateStack.back().get();
const BoundingBox& bb = drawable.getBoundingBox();
for(IntersectState::LineSegmentList::iterator sitr=cis->_segList.begin();
sitr!=cis->_segList.end();
++sitr)
{
if (sitr->second->intersect(bb))
{
TriangleFunctor<TriangleIntersect> ti;
ti.set(*sitr->second);
drawable.accept(ti);
if (ti._hit)
{
osg::Geometry* geometry = drawable.asGeometry();
for(TriangleIntersect::TriangleHitList::iterator thitr=ti._thl.begin();
thitr!=ti._thl.end();
++thitr)
{
Hit hit;
hit._nodePath = _nodePath;
hit._matrix = cis->_model_matrix;
hit._inverse = cis->_model_inverse;
hit._drawable = &drawable;
if (_nodePath.empty()) hit._geode = NULL;
else hit._geode = dynamic_cast<Geode*>(_nodePath.back());
TriangleHit& triHit = thitr->second;
hit._ratio = thitr->first;
hit._primitiveIndex = triHit._index;
hit._originalLineSegment = sitr->first;
hit._localLineSegment = sitr->second;
hit._intersectPoint = sitr->second->start()*(1.0f-hit._ratio)+
sitr->second->end()*hit._ratio;
hit._intersectNormal = triHit._normal;
if (geometry)
{
osg::Vec3Array* vertices = dynamic_cast<osg::Vec3Array*>(geometry->getVertexArray());
if (vertices)
{
osg::Vec3* first = &(vertices->front());
if (triHit._v1) hit._vecIndexList.push_back(triHit._v1-first);
if (triHit._v2) hit._vecIndexList.push_back(triHit._v2-first);
if (triHit._v3) hit._vecIndexList.push_back(triHit._v3-first);
}
}
_segHitList[sitr->first.get()].push_back(hit);
std::sort(_segHitList[sitr->first.get()].begin(),_segHitList[sitr->first.get()].end());
hitFlag = true;
}
}
}
}
return hitFlag;
}
void IntersectVisitor::apply(Drawable& drawable)
{
intersect(drawable);
}
void IntersectVisitor::apply(Geode& geode)
{
if (!enterNode(geode)) return;
for(unsigned int i = 0; i < geode.getNumDrawables(); i++ )
{
intersect(*geode.getDrawable(i));
}
leaveNode();
}
void IntersectVisitor::apply(Billboard& node)
{
if (!enterNode(node)) return;
// IntersectVisitor doesn't have getEyeLocal(), can we use NodeVisitor::getEyePoint()?
const Vec3& eye_local = getEyePoint();
for(unsigned int i = 0; i < node.getNumDrawables(); i++ )
{
const Vec3& pos = node.getPosition(i);
osg::ref_ptr<RefMatrix> billboard_matrix = new RefMatrix;
node.computeMatrix(*billboard_matrix,eye_local,pos);
pushMatrix(billboard_matrix.get(), osg::Transform::RELATIVE_RF);
intersect(*node.getDrawable(i));
popMatrix();
}
leaveNode();
}
void IntersectVisitor::apply(Group& node)
{
if (!enterNode(node)) return;
traverse(node);
leaveNode();
}
void IntersectVisitor::apply(Transform& node)
{
if (!enterNode(node)) return;
osg::ref_ptr<RefMatrix> matrix = new RefMatrix;
node.computeLocalToWorldMatrix(*matrix,this);
pushMatrix(matrix.get(), node.getReferenceFrame());
traverse(node);
popMatrix();
leaveNode();
}
void IntersectVisitor::apply(Switch& node)
{
apply((Group&)node);
}
void IntersectVisitor::apply(LOD& node)
{
apply((Group&)node);
}
PickVisitor::PickVisitor(const osg::Viewport* viewport, const osg::Matrixd& proj, const osg::Matrixd& view, float mx, float my):
_mx(mx),
_my(my),
_lastViewport(viewport),
_lastProjectionMatrix(proj),
_lastViewMatrix(view)
{
setLODSelectionMode(USE_SEGMENT_START_POINT_AS_EYE_POINT_FOR_LOD_LEVEL_SELECTION);
if (viewport &&
mx >= static_cast<float>(viewport->x()) &&
my >= static_cast<float>(viewport->y()) &&
mx < static_cast<float>(viewport->x()+viewport->width()) &&
my < static_cast<float>(viewport->y()+viewport->height()))
{
// mouse pointer intersect viewport so we can proceed to set up a line segment
osg::Matrix MVPW = proj * viewport->computeWindowMatrix();
osg::Matrixd inverseMVPW;
inverseMVPW.invert(MVPW);
osg::Vec3 nearPoint = osg::Vec3(mx,my,0.0f) * inverseMVPW;
osg::Vec3 farPoint = osg::Vec3(mx,my,1.0f) * inverseMVPW;
osg::LineSegment* lineSegment = new osg::LineSegment;
lineSegment->set(nearPoint, farPoint);
IntersectState* cis = !_intersectStateStack.empty() ? _intersectStateStack.back().get() : 0;
if (cis)
{
cis->_view_matrix = new RefMatrix(view);
cis->_view_inverse = new RefMatrix;
cis->_view_inverse->invert(*(cis->_view_matrix));
cis->_model_matrix = 0;
cis->_model_inverse = 0;
}
else
{
OSG_NOTICE<<"Warning: PickVisitor not set up correctly, picking errors likely"<<std::endl;
}
addLineSegment(lineSegment);
}
}
void PickVisitor::runNestedPickVisitor(osg::Node& node, const osg::Viewport* viewport, const osg::Matrix& proj, const osg::Matrix& view, float mx, float my)
{
PickVisitor newPickVisitor( viewport, proj, view, mx, my );
newPickVisitor.setTraversalMask(getTraversalMask());
newPickVisitor.getNodePath() = getNodePath();
// the new pickvisitor over the nodes children.
node.traverse( newPickVisitor );
for(LineSegmentHitListMap::iterator itr = newPickVisitor._segHitList.begin();
itr != newPickVisitor._segHitList.end();
++itr)
{
_segHitList.insert(*itr);
}
}
void PickVisitor::apply(osg::Projection& projection)
{
runNestedPickVisitor( projection,
_lastViewport.get(),
projection.getMatrix(),
_lastViewMatrix,
_mx, _my );
}
void PickVisitor::apply(osg::Camera& camera)
{
if (!camera.isRenderToTextureCamera())
{
if (camera.getReferenceFrame()==osg::Camera::RELATIVE_RF)
{
if (camera.getTransformOrder()==osg::Camera::POST_MULTIPLY)
{
runNestedPickVisitor( camera,
camera.getViewport() ? camera.getViewport() : _lastViewport.get(),
_lastProjectionMatrix * camera.getProjectionMatrix(),
_lastViewMatrix * camera.getViewMatrix(),
_mx, _my );
}
else // PRE_MULTIPLY
{
runNestedPickVisitor( camera,
camera.getViewport() ? camera.getViewport() : _lastViewport.get(),
camera.getProjectionMatrix() * _lastProjectionMatrix,
camera.getViewMatrix() * _lastViewMatrix,
_mx, _my );
}
}
else
{
runNestedPickVisitor( camera,
camera.getViewport() ? camera.getViewport() : _lastViewport.get(),
camera.getProjectionMatrix(),
camera.getViewMatrix(),
_mx, _my );
}
}
}