OpenSceneGraph/include/osg/CoordinateSystemNode

280 lines
10 KiB
C++

/* -*-c++-*- OpenSceneGraph - Copyright (C) 1998-2006 Robert Osfield
*
* This library is open source and may be redistributed and/or modified under
* the terms of the OpenSceneGraph Public License (OSGPL) version 0.0 or
* (at your option) any later version. The full license is in LICENSE file
* included with this distribution, and on the openscenegraph.org website.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* OpenSceneGraph Public License for more details.
*/
#ifndef OSG_COORDINATESYSTEMNODE
#define OSG_COORDINATESYSTEMNODE 1
#include <osg/Group>
#include <osg/Matrixd>
namespace osg
{
const double WGS_84_RADIUS_EQUATOR = 6378137.0;
const double WGS_84_RADIUS_POLAR = 6356752.3142;
/** EllipsoidModel encapsulates the ellipsoid used to model astronomical bodies,
* such as sun, planets, moon etc.
* All distance quantities (i.e. heights + radius) are in meters,
* and latitude and longitude are in radians.*/
class EllipsoidModel : public Object
{
public:
/** WGS_84 is a common representation of the earth's spheroid */
EllipsoidModel(double radiusEquator = WGS_84_RADIUS_EQUATOR,
double radiusPolar = WGS_84_RADIUS_POLAR):
_radiusEquator(radiusEquator),
_radiusPolar(radiusPolar) { computeCoefficients(); }
EllipsoidModel(const EllipsoidModel& et,const CopyOp& copyop=CopyOp::SHALLOW_COPY):
Object(et,copyop),
_radiusEquator(et._radiusEquator),
_radiusPolar(et._radiusPolar) { computeCoefficients(); }
META_Object(osg,EllipsoidModel);
void setRadiusEquator(double radius) { _radiusEquator = radius; computeCoefficients(); }
double getRadiusEquator() const { return _radiusEquator; }
void setRadiusPolar(double radius) { _radiusPolar = radius; computeCoefficients(); }
double getRadiusPolar() const { return _radiusPolar; }
inline void convertLatLongHeightToXYZ(double latitude, double longitude, double height,
double& X, double& Y, double& Z) const;
inline void convertXYZToLatLongHeight(double X, double Y, double Z,
double& latitude, double& longitude, double& height) const;
inline void computeLocalToWorldTransformFromLatLongHeight(double latitude, double longitude, double height, osg::Matrixd& localToWorld) const;
inline void computeLocalToWorldTransformFromXYZ(double X, double Y, double Z, osg::Matrixd& localToWorld) const;
inline void computeCoordinateFrame(double latitude, double longitude, osg::Matrixd& localToWorld) const;
inline osg::Vec3d computeLocalUpVector(double X, double Y, double Z) const;
// Convenience method for determining if EllipsoidModel is a stock WGS84 ellipsoid
inline bool isWGS84() const {return(_radiusEquator == WGS_84_RADIUS_EQUATOR && _radiusPolar == WGS_84_RADIUS_POLAR);}
// Compares two EllipsoidModel by comparing critical internal values.
// Ignores _eccentricitySquared since it's just a cached value derived from
// the _radiusEquator and _radiusPolar members.
friend bool operator == ( const EllipsoidModel & e1, const EllipsoidModel& e2) {return(e1._radiusEquator == e2._radiusEquator && e1._radiusPolar == e2._radiusPolar);}
protected:
void computeCoefficients()
{
double flattening = (_radiusEquator-_radiusPolar)/_radiusEquator;
_eccentricitySquared = 2*flattening - flattening*flattening;
}
double _radiusEquator;
double _radiusPolar;
double _eccentricitySquared;
};
/** CoordinateFrame encapsulates the orientation of east, north and up.*/
typedef Matrixd CoordinateFrame;
/** CoordinateSystem encapsulate the coordinate system that is associated with objects in a scene.
For an overview of common earth bases coordinate systems see http://www.colorado.edu/geography/gcraft/notes/coordsys/coordsys_f.html */
class OSG_EXPORT CoordinateSystemNode : public Group
{
public:
CoordinateSystemNode();
CoordinateSystemNode(const std::string& format, const std::string& cs);
/** Copy constructor using CopyOp to manage deep vs shallow copy.*/
CoordinateSystemNode(const CoordinateSystemNode&,const osg::CopyOp& copyop=osg::CopyOp::SHALLOW_COPY);
META_Node(osg,CoordinateSystemNode);
/** Set the coordinate system node up by copying the format, coordinate system string, and ellipsoid model of another coordinate system node.*/
void set(const CoordinateSystemNode& csn);
/** Set the coordinate system format string. Typical values would be WKT, PROJ4, USGS etc.*/
void setFormat(const std::string& format) { _format = format; }
/** Get the coordinate system format string.*/
const std::string& getFormat() const { return _format; }
/** Set the CoordinateSystem reference string, should be stored in a form consistent with the Format.*/
void setCoordinateSystem(const std::string& cs) { _cs = cs; }
/** Get the CoordinateSystem reference string.*/
const std::string& getCoordinateSystem() const { return _cs; }
/** Set EllipsoidModel to describe the model used to map lat, long and height into geocentric XYZ and back. */
void setEllipsoidModel(EllipsoidModel* ellipsode) { _ellipsoidModel = ellipsode; }
/** Get the EllipsoidModel.*/
EllipsoidModel* getEllipsoidModel() { return _ellipsoidModel.get(); }
/** Get the const EllipsoidModel.*/
const EllipsoidModel* getEllipsoidModel() const { return _ellipsoidModel.get(); }
/** Compute the local coordinate frame for specified point.*/
CoordinateFrame computeLocalCoordinateFrame(const Vec3d& position) const;
/** Compute the local up-vector for specified point.*/
osg::Vec3d computeLocalUpVector(const Vec3d& position) const;
protected:
virtual ~CoordinateSystemNode() {}
std::string _format;
std::string _cs;
ref_ptr<EllipsoidModel> _ellipsoidModel;
};
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// implement inline methods.
//
inline void EllipsoidModel::convertLatLongHeightToXYZ(double latitude, double longitude, double height,
double& X, double& Y, double& Z) const
{
// for details on maths see http://www.colorado.edu/geography/gcraft/notes/datum/gif/llhxyz.gif
double sin_latitude = sin(latitude);
double cos_latitude = cos(latitude);
double N = _radiusEquator / sqrt( 1.0 - _eccentricitySquared*sin_latitude*sin_latitude);
X = (N+height)*cos_latitude*cos(longitude);
Y = (N+height)*cos_latitude*sin(longitude);
Z = (N*(1-_eccentricitySquared)+height)*sin_latitude;
}
inline void EllipsoidModel::convertXYZToLatLongHeight(double X, double Y, double Z,
double& latitude, double& longitude, double& height) const
{
// handle polar and center-of-earth cases directly.
if (X != 0.0)
longitude = atan2(Y,X);
else
{
if (Y > 0.0)
longitude = PI_2;
else if (Y < 0.0)
longitude = -PI_2;
else
{
// at pole or at center of the earth
longitude = 0.0;
if (Z > 0.0)
{ // north pole.
latitude = PI_2;
height = Z - _radiusPolar;
}
else if (Z < 0.0)
{ // south pole.
latitude = -PI_2;
height = -Z - _radiusPolar;
}
else
{ // center of earth.
latitude = PI_2;
height = -_radiusPolar;
}
return;
}
}
// http://www.colorado.edu/geography/gcraft/notes/datum/gif/xyzllh.gif
double p = sqrt(X*X + Y*Y);
double theta = atan2(Z*_radiusEquator , (p*_radiusPolar));
double eDashSquared = (_radiusEquator*_radiusEquator - _radiusPolar*_radiusPolar)/
(_radiusPolar*_radiusPolar);
double sin_theta = sin(theta);
double cos_theta = cos(theta);
latitude = atan( (Z + eDashSquared*_radiusPolar*sin_theta*sin_theta*sin_theta) /
(p - _eccentricitySquared*_radiusEquator*cos_theta*cos_theta*cos_theta) );
double sin_latitude = sin(latitude);
double N = _radiusEquator / sqrt( 1.0 - _eccentricitySquared*sin_latitude*sin_latitude);
height = p/cos(latitude) - N;
}
inline void EllipsoidModel::computeLocalToWorldTransformFromLatLongHeight(double latitude, double longitude, double height, osg::Matrixd& localToWorld) const
{
double X, Y, Z;
convertLatLongHeightToXYZ(latitude,longitude,height,X,Y,Z);
localToWorld.makeTranslate(X,Y,Z);
computeCoordinateFrame(latitude, longitude, localToWorld);
}
inline void EllipsoidModel::computeLocalToWorldTransformFromXYZ(double X, double Y, double Z, osg::Matrixd& localToWorld) const
{
double latitude, longitude, height;
convertXYZToLatLongHeight(X,Y,Z,latitude,longitude,height);
localToWorld.makeTranslate(X,Y,Z);
computeCoordinateFrame(latitude, longitude, localToWorld);
}
inline void EllipsoidModel::computeCoordinateFrame(double latitude, double longitude, osg::Matrixd& localToWorld) const
{
// Compute up vector
osg::Vec3d up ( cos(longitude)*cos(latitude), sin(longitude)*cos(latitude), sin(latitude));
// Compute east vector
osg::Vec3d east (-sin(longitude), cos(longitude), 0);
// Compute north vector = outer product up x east
osg::Vec3d north = up ^ east;
// set matrix
localToWorld(0,0) = east[0];
localToWorld(0,1) = east[1];
localToWorld(0,2) = east[2];
localToWorld(1,0) = north[0];
localToWorld(1,1) = north[1];
localToWorld(1,2) = north[2];
localToWorld(2,0) = up[0];
localToWorld(2,1) = up[1];
localToWorld(2,2) = up[2];
}
inline osg::Vec3d EllipsoidModel::computeLocalUpVector(double X, double Y, double Z) const
{
// Note latitude is angle between normal to ellipsoid surface and XY-plane
double latitude;
double longitude;
double altitude;
convertXYZToLatLongHeight(X,Y,Z,latitude,longitude,altitude);
// Compute up vector
return osg::Vec3d( cos(longitude) * cos(latitude),
sin(longitude) * cos(latitude),
sin(latitude));
}
}
#endif