914 lines
27 KiB
C++
914 lines
27 KiB
C++
/* -*-c++-*- OpenSceneGraph - Copyright (C) 1998-2006 Robert Osfield
|
|
*
|
|
* This library is open source and may be redistributed and/or modified under
|
|
* the terms of the OpenSceneGraph Public License (OSGPL) version 0.0 or
|
|
* (at your option) any later version. The full license is in LICENSE file
|
|
* included with this distribution, and on the openscenegraph.org website.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* OpenSceneGraph Public License for more details.
|
|
*/
|
|
|
|
#include <osg/Quat>
|
|
#include <osg/Notify>
|
|
#include <osg/Math>
|
|
#include <osg/Timer>
|
|
|
|
#include <osg/GL>
|
|
|
|
#include <stdlib.h>
|
|
|
|
using namespace osg;
|
|
|
|
#define SET_ROW(row, v1, v2, v3, v4 ) \
|
|
_mat[(row)][0] = (v1); \
|
|
_mat[(row)][1] = (v2); \
|
|
_mat[(row)][2] = (v3); \
|
|
_mat[(row)][3] = (v4);
|
|
|
|
#define INNER_PRODUCT(a,b,r,c) \
|
|
((a)._mat[r][0] * (b)._mat[0][c]) \
|
|
+((a)._mat[r][1] * (b)._mat[1][c]) \
|
|
+((a)._mat[r][2] * (b)._mat[2][c]) \
|
|
+((a)._mat[r][3] * (b)._mat[3][c])
|
|
|
|
|
|
Matrix_implementation::Matrix_implementation( value_type a00, value_type a01, value_type a02, value_type a03,
|
|
value_type a10, value_type a11, value_type a12, value_type a13,
|
|
value_type a20, value_type a21, value_type a22, value_type a23,
|
|
value_type a30, value_type a31, value_type a32, value_type a33)
|
|
{
|
|
SET_ROW(0, a00, a01, a02, a03 )
|
|
SET_ROW(1, a10, a11, a12, a13 )
|
|
SET_ROW(2, a20, a21, a22, a23 )
|
|
SET_ROW(3, a30, a31, a32, a33 )
|
|
}
|
|
|
|
void Matrix_implementation::set( value_type a00, value_type a01, value_type a02, value_type a03,
|
|
value_type a10, value_type a11, value_type a12, value_type a13,
|
|
value_type a20, value_type a21, value_type a22, value_type a23,
|
|
value_type a30, value_type a31, value_type a32, value_type a33)
|
|
{
|
|
SET_ROW(0, a00, a01, a02, a03 )
|
|
SET_ROW(1, a10, a11, a12, a13 )
|
|
SET_ROW(2, a20, a21, a22, a23 )
|
|
SET_ROW(3, a30, a31, a32, a33 )
|
|
}
|
|
|
|
#define QX q._v[0]
|
|
#define QY q._v[1]
|
|
#define QZ q._v[2]
|
|
#define QW q._v[3]
|
|
|
|
void Matrix_implementation::setRotate(const Quat& q_in)
|
|
{
|
|
Quat q(q_in);
|
|
double length2 = q.length2();
|
|
if (length2!=1.0 && length2!=0)
|
|
{
|
|
// normalize quat if required.
|
|
q /= sqrt(length2);
|
|
}
|
|
|
|
// Source: Gamasutra, Rotating Objects Using Quaternions
|
|
//
|
|
//http://www.gamasutra.com/features/19980703/quaternions_01.htm
|
|
|
|
double wx, wy, wz, xx, yy, yz, xy, xz, zz, x2, y2, z2;
|
|
|
|
// calculate coefficients
|
|
x2 = QX + QX;
|
|
y2 = QY + QY;
|
|
z2 = QZ + QZ;
|
|
|
|
xx = QX * x2;
|
|
xy = QX * y2;
|
|
xz = QX * z2;
|
|
|
|
yy = QY * y2;
|
|
yz = QY * z2;
|
|
zz = QZ * z2;
|
|
|
|
wx = QW * x2;
|
|
wy = QW * y2;
|
|
wz = QW * z2;
|
|
|
|
// Note. Gamasutra gets the matrix assignments inverted, resulting
|
|
// in left-handed rotations, which is contrary to OpenGL and OSG's
|
|
// methodology. The matrix assignment has been altered in the next
|
|
// few lines of code to do the right thing.
|
|
// Don Burns - Oct 13, 2001
|
|
_mat[0][0] = 1.0 - (yy + zz);
|
|
_mat[1][0] = xy - wz;
|
|
_mat[2][0] = xz + wy;
|
|
|
|
|
|
_mat[0][1] = xy + wz;
|
|
_mat[1][1] = 1.0 - (xx + zz);
|
|
_mat[2][1] = yz - wx;
|
|
|
|
_mat[0][2] = xz - wy;
|
|
_mat[1][2] = yz + wx;
|
|
_mat[2][2] = 1.0 - (xx + yy);
|
|
|
|
#if 0
|
|
_mat[0][3] = 0.0;
|
|
_mat[1][3] = 0.0;
|
|
_mat[2][3] = 0.0;
|
|
|
|
_mat[3][0] = 0.0;
|
|
_mat[3][1] = 0.0;
|
|
_mat[3][2] = 0.0;
|
|
_mat[3][3] = 1.0;
|
|
#endif
|
|
}
|
|
|
|
#if 1
|
|
|
|
// David Spillings implementation Mk 2
|
|
Quat Matrix_implementation::getRotate() const
|
|
{
|
|
Quat q;
|
|
|
|
// From http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm
|
|
QW = 0.5 * sqrt( osg::maximum( 0.0, 1.0 + _mat[0][0] + _mat[1][1] + _mat[2][2] ) );
|
|
QX = 0.5 * sqrt( osg::maximum( 0.0, 1.0 + _mat[0][0] - _mat[1][1] - _mat[2][2] ) );
|
|
QY = 0.5 * sqrt( osg::maximum( 0.0, 1.0 - _mat[0][0] + _mat[1][1] - _mat[2][2] ) );
|
|
QZ = 0.5 * sqrt( osg::maximum( 0.0, 1.0 - _mat[0][0] - _mat[1][1] + _mat[2][2] ) );
|
|
|
|
QX = QX * osg::sign( _mat[1][2] - _mat[2][1]) ;
|
|
QY = QY * osg::sign( _mat[2][0] - _mat[0][2]) ;
|
|
QZ = QZ * osg::sign( _mat[0][1] - _mat[1][0]) ;
|
|
|
|
return q;
|
|
}
|
|
|
|
#else
|
|
|
|
#if 1
|
|
// David Spillings implementation Mk 1
|
|
void Matrix_implementation::get( Quat& q ) const
|
|
{
|
|
value_type s;
|
|
value_type tq[4];
|
|
int i, j;
|
|
|
|
// Use tq to store the largest trace
|
|
tq[0] = 1 + _mat[0][0]+_mat[1][1]+_mat[2][2];
|
|
tq[1] = 1 + _mat[0][0]-_mat[1][1]-_mat[2][2];
|
|
tq[2] = 1 - _mat[0][0]+_mat[1][1]-_mat[2][2];
|
|
tq[3] = 1 - _mat[0][0]-_mat[1][1]+_mat[2][2];
|
|
|
|
// Find the maximum (could also use stacked if's later)
|
|
j = 0;
|
|
for(i=1;i<4;i++) j = (tq[i]>tq[j])? i : j;
|
|
|
|
// check the diagonal
|
|
if (j==0)
|
|
{
|
|
/* perform instant calculation */
|
|
QW = tq[0];
|
|
QX = _mat[1][2]-_mat[2][1];
|
|
QY = _mat[2][0]-_mat[0][2];
|
|
QZ = _mat[0][1]-_mat[1][0];
|
|
}
|
|
else if (j==1)
|
|
{
|
|
QW = _mat[1][2]-_mat[2][1];
|
|
QX = tq[1];
|
|
QY = _mat[0][1]+_mat[1][0];
|
|
QZ = _mat[2][0]+_mat[0][2];
|
|
}
|
|
else if (j==2)
|
|
{
|
|
QW = _mat[2][0]-_mat[0][2];
|
|
QX = _mat[0][1]+_mat[1][0];
|
|
QY = tq[2];
|
|
QZ = _mat[1][2]+_mat[2][1];
|
|
}
|
|
else /* if (j==3) */
|
|
{
|
|
QW = _mat[0][1]-_mat[1][0];
|
|
QX = _mat[2][0]+_mat[0][2];
|
|
QY = _mat[1][2]+_mat[2][1];
|
|
QZ = tq[3];
|
|
}
|
|
|
|
s = sqrt(0.25/tq[j]);
|
|
QW *= s;
|
|
QX *= s;
|
|
QY *= s;
|
|
QZ *= s;
|
|
|
|
}
|
|
#else
|
|
// Original implementation
|
|
void Matrix_implementation::get( Quat& q ) const
|
|
{
|
|
// Source: Gamasutra, Rotating Objects Using Quaternions
|
|
//
|
|
//http://www.gamasutra.com/features/programming/19980703/quaternions_01.htm
|
|
|
|
value_type tr, s;
|
|
value_type tq[4];
|
|
int i, j, k;
|
|
|
|
int nxt[3] = {1, 2, 0};
|
|
|
|
tr = _mat[0][0] + _mat[1][1] + _mat[2][2]+1.0;
|
|
|
|
// check the diagonal
|
|
if (tr > 0.0)
|
|
{
|
|
s = (value_type)sqrt (tr);
|
|
QW = s / 2.0;
|
|
s = 0.5 / s;
|
|
QX = (_mat[1][2] - _mat[2][1]) * s;
|
|
QY = (_mat[2][0] - _mat[0][2]) * s;
|
|
QZ = (_mat[0][1] - _mat[1][0]) * s;
|
|
}
|
|
else
|
|
{
|
|
// diagonal is negative
|
|
i = 0;
|
|
if (_mat[1][1] > _mat[0][0])
|
|
i = 1;
|
|
if (_mat[2][2] > _mat[i][i])
|
|
i = 2;
|
|
j = nxt[i];
|
|
k = nxt[j];
|
|
|
|
s = (value_type)sqrt ((_mat[i][i] - (_mat[j][j] + _mat[k][k])) + 1.0);
|
|
|
|
tq[i] = s * 0.5;
|
|
|
|
if (s != 0.0)
|
|
s = 0.5 / s;
|
|
|
|
tq[3] = (_mat[j][k] - _mat[k][j]) * s;
|
|
tq[j] = (_mat[i][j] + _mat[j][i]) * s;
|
|
tq[k] = (_mat[i][k] + _mat[k][i]) * s;
|
|
|
|
QX = tq[0];
|
|
QY = tq[1];
|
|
QZ = tq[2];
|
|
QW = tq[3];
|
|
}
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
int Matrix_implementation::compare(const Matrix_implementation& m) const
|
|
{
|
|
const Matrix_implementation::value_type* lhs = reinterpret_cast<const Matrix_implementation::value_type*>(_mat);
|
|
const Matrix_implementation::value_type* end_lhs = lhs+16;
|
|
const Matrix_implementation::value_type* rhs = reinterpret_cast<const Matrix_implementation::value_type*>(m._mat);
|
|
for(;lhs!=end_lhs;++lhs,++rhs)
|
|
{
|
|
if (*lhs < *rhs) return -1;
|
|
if (*rhs < *lhs) return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void Matrix_implementation::setTrans( value_type tx, value_type ty, value_type tz )
|
|
{
|
|
_mat[3][0] = tx;
|
|
_mat[3][1] = ty;
|
|
_mat[3][2] = tz;
|
|
}
|
|
|
|
|
|
void Matrix_implementation::setTrans( const Vec3f& v )
|
|
{
|
|
_mat[3][0] = v[0];
|
|
_mat[3][1] = v[1];
|
|
_mat[3][2] = v[2];
|
|
}
|
|
void Matrix_implementation::setTrans( const Vec3d& v )
|
|
{
|
|
_mat[3][0] = v[0];
|
|
_mat[3][1] = v[1];
|
|
_mat[3][2] = v[2];
|
|
}
|
|
|
|
void Matrix_implementation::makeIdentity()
|
|
{
|
|
SET_ROW(0, 1, 0, 0, 0 )
|
|
SET_ROW(1, 0, 1, 0, 0 )
|
|
SET_ROW(2, 0, 0, 1, 0 )
|
|
SET_ROW(3, 0, 0, 0, 1 )
|
|
}
|
|
|
|
void Matrix_implementation::makeScale( const Vec3f& v )
|
|
{
|
|
makeScale(v[0], v[1], v[2] );
|
|
}
|
|
|
|
void Matrix_implementation::makeScale( const Vec3d& v )
|
|
{
|
|
makeScale(v[0], v[1], v[2] );
|
|
}
|
|
|
|
void Matrix_implementation::makeScale( value_type x, value_type y, value_type z )
|
|
{
|
|
SET_ROW(0, x, 0, 0, 0 )
|
|
SET_ROW(1, 0, y, 0, 0 )
|
|
SET_ROW(2, 0, 0, z, 0 )
|
|
SET_ROW(3, 0, 0, 0, 1 )
|
|
}
|
|
|
|
void Matrix_implementation::makeTranslate( const Vec3f& v )
|
|
{
|
|
makeTranslate( v[0], v[1], v[2] );
|
|
}
|
|
|
|
void Matrix_implementation::makeTranslate( const Vec3d& v )
|
|
{
|
|
makeTranslate( v[0], v[1], v[2] );
|
|
}
|
|
|
|
void Matrix_implementation::makeTranslate( value_type x, value_type y, value_type z )
|
|
{
|
|
SET_ROW(0, 1, 0, 0, 0 )
|
|
SET_ROW(1, 0, 1, 0, 0 )
|
|
SET_ROW(2, 0, 0, 1, 0 )
|
|
SET_ROW(3, x, y, z, 1 )
|
|
}
|
|
|
|
void Matrix_implementation::makeRotate( const Vec3f& from, const Vec3f& to )
|
|
{
|
|
makeIdentity();
|
|
|
|
Quat quat;
|
|
quat.makeRotate(from,to);
|
|
setRotate(quat);
|
|
}
|
|
void Matrix_implementation::makeRotate( const Vec3d& from, const Vec3d& to )
|
|
{
|
|
makeIdentity();
|
|
|
|
Quat quat;
|
|
quat.makeRotate(from,to);
|
|
setRotate(quat);
|
|
}
|
|
|
|
void Matrix_implementation::makeRotate( value_type angle, const Vec3f& axis )
|
|
{
|
|
makeIdentity();
|
|
|
|
Quat quat;
|
|
quat.makeRotate( angle, axis);
|
|
setRotate(quat);
|
|
}
|
|
void Matrix_implementation::makeRotate( value_type angle, const Vec3d& axis )
|
|
{
|
|
makeIdentity();
|
|
|
|
Quat quat;
|
|
quat.makeRotate( angle, axis);
|
|
setRotate(quat);
|
|
}
|
|
|
|
void Matrix_implementation::makeRotate( value_type angle, value_type x, value_type y, value_type z )
|
|
{
|
|
makeIdentity();
|
|
|
|
Quat quat;
|
|
quat.makeRotate( angle, x, y, z);
|
|
setRotate(quat);
|
|
}
|
|
|
|
void Matrix_implementation::makeRotate( const Quat& quat )
|
|
{
|
|
makeIdentity();
|
|
|
|
setRotate(quat);
|
|
}
|
|
|
|
void Matrix_implementation::makeRotate( value_type angle1, const Vec3f& axis1,
|
|
value_type angle2, const Vec3f& axis2,
|
|
value_type angle3, const Vec3f& axis3)
|
|
{
|
|
makeIdentity();
|
|
|
|
Quat quat;
|
|
quat.makeRotate(angle1, axis1,
|
|
angle2, axis2,
|
|
angle3, axis3);
|
|
setRotate(quat);
|
|
}
|
|
|
|
void Matrix_implementation::makeRotate( value_type angle1, const Vec3d& axis1,
|
|
value_type angle2, const Vec3d& axis2,
|
|
value_type angle3, const Vec3d& axis3)
|
|
{
|
|
makeIdentity();
|
|
|
|
Quat quat;
|
|
quat.makeRotate(angle1, axis1,
|
|
angle2, axis2,
|
|
angle3, axis3);
|
|
setRotate(quat);
|
|
}
|
|
|
|
void Matrix_implementation::mult( const Matrix_implementation& lhs, const Matrix_implementation& rhs )
|
|
{
|
|
if (&lhs==this)
|
|
{
|
|
postMult(rhs);
|
|
return;
|
|
}
|
|
if (&rhs==this)
|
|
{
|
|
preMult(lhs);
|
|
return;
|
|
}
|
|
|
|
// PRECONDITION: We assume neither &lhs nor &rhs == this
|
|
// if it did, use preMult or postMult instead
|
|
_mat[0][0] = INNER_PRODUCT(lhs, rhs, 0, 0);
|
|
_mat[0][1] = INNER_PRODUCT(lhs, rhs, 0, 1);
|
|
_mat[0][2] = INNER_PRODUCT(lhs, rhs, 0, 2);
|
|
_mat[0][3] = INNER_PRODUCT(lhs, rhs, 0, 3);
|
|
_mat[1][0] = INNER_PRODUCT(lhs, rhs, 1, 0);
|
|
_mat[1][1] = INNER_PRODUCT(lhs, rhs, 1, 1);
|
|
_mat[1][2] = INNER_PRODUCT(lhs, rhs, 1, 2);
|
|
_mat[1][3] = INNER_PRODUCT(lhs, rhs, 1, 3);
|
|
_mat[2][0] = INNER_PRODUCT(lhs, rhs, 2, 0);
|
|
_mat[2][1] = INNER_PRODUCT(lhs, rhs, 2, 1);
|
|
_mat[2][2] = INNER_PRODUCT(lhs, rhs, 2, 2);
|
|
_mat[2][3] = INNER_PRODUCT(lhs, rhs, 2, 3);
|
|
_mat[3][0] = INNER_PRODUCT(lhs, rhs, 3, 0);
|
|
_mat[3][1] = INNER_PRODUCT(lhs, rhs, 3, 1);
|
|
_mat[3][2] = INNER_PRODUCT(lhs, rhs, 3, 2);
|
|
_mat[3][3] = INNER_PRODUCT(lhs, rhs, 3, 3);
|
|
}
|
|
|
|
void Matrix_implementation::preMult( const Matrix_implementation& other )
|
|
{
|
|
// brute force method requiring a copy
|
|
//Matrix_implementation tmp(other* *this);
|
|
// *this = tmp;
|
|
|
|
// more efficient method just use a value_type[4] for temporary storage.
|
|
value_type t[4];
|
|
for(int col=0; col<4; ++col) {
|
|
t[0] = INNER_PRODUCT( other, *this, 0, col );
|
|
t[1] = INNER_PRODUCT( other, *this, 1, col );
|
|
t[2] = INNER_PRODUCT( other, *this, 2, col );
|
|
t[3] = INNER_PRODUCT( other, *this, 3, col );
|
|
_mat[0][col] = t[0];
|
|
_mat[1][col] = t[1];
|
|
_mat[2][col] = t[2];
|
|
_mat[3][col] = t[3];
|
|
}
|
|
|
|
}
|
|
|
|
void Matrix_implementation::postMult( const Matrix_implementation& other )
|
|
{
|
|
// brute force method requiring a copy
|
|
//Matrix_implementation tmp(*this * other);
|
|
// *this = tmp;
|
|
|
|
// more efficient method just use a value_type[4] for temporary storage.
|
|
value_type t[4];
|
|
for(int row=0; row<4; ++row)
|
|
{
|
|
t[0] = INNER_PRODUCT( *this, other, row, 0 );
|
|
t[1] = INNER_PRODUCT( *this, other, row, 1 );
|
|
t[2] = INNER_PRODUCT( *this, other, row, 2 );
|
|
t[3] = INNER_PRODUCT( *this, other, row, 3 );
|
|
SET_ROW(row, t[0], t[1], t[2], t[3] )
|
|
}
|
|
}
|
|
|
|
#undef INNER_PRODUCT
|
|
|
|
// orthoNormalize the 3x3 rotation matrix
|
|
void Matrix_implementation::orthoNormalize(const Matrix_implementation& rhs)
|
|
{
|
|
value_type x_colMag = (rhs._mat[0][0] * rhs._mat[0][0]) + (rhs._mat[1][0] * rhs._mat[1][0]) + (rhs._mat[2][0] * rhs._mat[2][0]);
|
|
value_type y_colMag = (rhs._mat[0][1] * rhs._mat[0][1]) + (rhs._mat[1][1] * rhs._mat[1][1]) + (rhs._mat[2][1] * rhs._mat[2][1]);
|
|
value_type z_colMag = (rhs._mat[0][2] * rhs._mat[0][2]) + (rhs._mat[1][2] * rhs._mat[1][2]) + (rhs._mat[2][2] * rhs._mat[2][2]);
|
|
|
|
if(!equivalent((double)x_colMag, 1.0) && !equivalent((double)x_colMag, 0.0))
|
|
{
|
|
x_colMag = sqrt(x_colMag);
|
|
_mat[0][0] = rhs._mat[0][0] / x_colMag;
|
|
_mat[1][0] = rhs._mat[1][0] / x_colMag;
|
|
_mat[2][0] = rhs._mat[2][0] / x_colMag;
|
|
}
|
|
else
|
|
{
|
|
_mat[0][0] = rhs._mat[0][0];
|
|
_mat[1][0] = rhs._mat[1][0];
|
|
_mat[2][0] = rhs._mat[2][0];
|
|
}
|
|
|
|
if(!equivalent((double)y_colMag, 1.0) && !equivalent((double)y_colMag, 0.0))
|
|
{
|
|
y_colMag = sqrt(y_colMag);
|
|
_mat[0][1] = rhs._mat[0][1] / y_colMag;
|
|
_mat[1][1] = rhs._mat[1][1] / y_colMag;
|
|
_mat[2][1] = rhs._mat[2][1] / y_colMag;
|
|
}
|
|
else
|
|
{
|
|
_mat[0][1] = rhs._mat[0][1];
|
|
_mat[1][1] = rhs._mat[1][1];
|
|
_mat[2][1] = rhs._mat[2][1];
|
|
}
|
|
|
|
if(!equivalent((double)z_colMag, 1.0) && !equivalent((double)z_colMag, 0.0))
|
|
{
|
|
z_colMag = sqrt(z_colMag);
|
|
_mat[0][2] = rhs._mat[0][2] / z_colMag;
|
|
_mat[1][2] = rhs._mat[1][2] / z_colMag;
|
|
_mat[2][2] = rhs._mat[2][2] / z_colMag;
|
|
}
|
|
else
|
|
{
|
|
_mat[0][2] = rhs._mat[0][2];
|
|
_mat[1][2] = rhs._mat[1][2];
|
|
_mat[2][2] = rhs._mat[2][2];
|
|
}
|
|
|
|
_mat[3][0] = rhs._mat[3][0];
|
|
_mat[3][1] = rhs._mat[3][1];
|
|
_mat[3][2] = rhs._mat[3][2];
|
|
|
|
_mat[0][3] = rhs._mat[0][3];
|
|
_mat[1][3] = rhs._mat[1][3];
|
|
_mat[2][3] = rhs._mat[2][3];
|
|
_mat[3][3] = rhs._mat[3][3];
|
|
|
|
}
|
|
|
|
/******************************************
|
|
Matrix inversion technique:
|
|
Given a matrix mat, we want to invert it.
|
|
mat = [ r00 r01 r02 a
|
|
r10 r11 r12 b
|
|
r20 r21 r22 c
|
|
tx ty tz d ]
|
|
We note that this matrix can be split into three matrices.
|
|
mat = rot * trans * corr, where rot is rotation part, trans is translation part, and corr is the correction due to perspective (if any).
|
|
rot = [ r00 r01 r02 0
|
|
r10 r11 r12 0
|
|
r20 r21 r22 0
|
|
0 0 0 1 ]
|
|
trans = [ 1 0 0 0
|
|
0 1 0 0
|
|
0 0 1 0
|
|
tx ty tz 1 ]
|
|
corr = [ 1 0 0 px
|
|
0 1 0 py
|
|
0 0 1 pz
|
|
0 0 0 s ]
|
|
where the elements of corr are obtained from linear combinations of the elements of rot, trans, and mat.
|
|
So the inverse is mat' = (trans * corr)' * rot', where rot' must be computed the traditional way, which is easy since it is only a 3x3 matrix.
|
|
This problem is simplified if [px py pz s] = [0 0 0 1], which will happen if mat was composed only of rotations, scales, and translations (which is common). In this case, we can ignore corr entirely which saves on a lot of computations.
|
|
******************************************/
|
|
|
|
bool Matrix_implementation::invert_4x3( const Matrix_implementation& mat )
|
|
{
|
|
if (&mat==this)
|
|
{
|
|
Matrix_implementation tm(mat);
|
|
return invert_4x3(tm);
|
|
}
|
|
|
|
register value_type r00, r01, r02,
|
|
r10, r11, r12,
|
|
r20, r21, r22;
|
|
// Copy rotation components directly into registers for speed
|
|
r00 = mat._mat[0][0]; r01 = mat._mat[0][1]; r02 = mat._mat[0][2];
|
|
r10 = mat._mat[1][0]; r11 = mat._mat[1][1]; r12 = mat._mat[1][2];
|
|
r20 = mat._mat[2][0]; r21 = mat._mat[2][1]; r22 = mat._mat[2][2];
|
|
|
|
// Partially compute inverse of rot
|
|
_mat[0][0] = r11*r22 - r12*r21;
|
|
_mat[0][1] = r02*r21 - r01*r22;
|
|
_mat[0][2] = r01*r12 - r02*r11;
|
|
|
|
// Compute determinant of rot from 3 elements just computed
|
|
register value_type one_over_det = 1.0/(r00*_mat[0][0] + r10*_mat[0][1] + r20*_mat[0][2]);
|
|
r00 *= one_over_det; r10 *= one_over_det; r20 *= one_over_det; // Saves on later computations
|
|
|
|
// Finish computing inverse of rot
|
|
_mat[0][0] *= one_over_det;
|
|
_mat[0][1] *= one_over_det;
|
|
_mat[0][2] *= one_over_det;
|
|
_mat[0][3] = 0.0;
|
|
_mat[1][0] = r12*r20 - r10*r22; // Have already been divided by det
|
|
_mat[1][1] = r00*r22 - r02*r20; // same
|
|
_mat[1][2] = r02*r10 - r00*r12; // same
|
|
_mat[1][3] = 0.0;
|
|
_mat[2][0] = r10*r21 - r11*r20; // Have already been divided by det
|
|
_mat[2][1] = r01*r20 - r00*r21; // same
|
|
_mat[2][2] = r00*r11 - r01*r10; // same
|
|
_mat[2][3] = 0.0;
|
|
_mat[3][3] = 1.0;
|
|
|
|
// We no longer need the rxx or det variables anymore, so we can reuse them for whatever we want. But we will still rename them for the sake of clarity.
|
|
|
|
#define d r22
|
|
d = mat._mat[3][3];
|
|
|
|
if( osg::square(d-1.0) > 1.0e-6 ) // Involves perspective, so we must
|
|
{ // compute the full inverse
|
|
|
|
Matrix_implementation TPinv;
|
|
_mat[3][0] = _mat[3][1] = _mat[3][2] = 0.0;
|
|
|
|
#define px r00
|
|
#define py r01
|
|
#define pz r02
|
|
#define one_over_s one_over_det
|
|
#define a r10
|
|
#define b r11
|
|
#define c r12
|
|
|
|
a = mat._mat[0][3]; b = mat._mat[1][3]; c = mat._mat[2][3];
|
|
px = _mat[0][0]*a + _mat[0][1]*b + _mat[0][2]*c;
|
|
py = _mat[1][0]*a + _mat[1][1]*b + _mat[1][2]*c;
|
|
pz = _mat[2][0]*a + _mat[2][1]*b + _mat[2][2]*c;
|
|
|
|
#undef a
|
|
#undef b
|
|
#undef c
|
|
#define tx r10
|
|
#define ty r11
|
|
#define tz r12
|
|
|
|
tx = mat._mat[3][0]; ty = mat._mat[3][1]; tz = mat._mat[3][2];
|
|
one_over_s = 1.0/(d - (tx*px + ty*py + tz*pz));
|
|
|
|
tx *= one_over_s; ty *= one_over_s; tz *= one_over_s; // Reduces number of calculations later on
|
|
|
|
// Compute inverse of trans*corr
|
|
TPinv._mat[0][0] = tx*px + 1.0;
|
|
TPinv._mat[0][1] = ty*px;
|
|
TPinv._mat[0][2] = tz*px;
|
|
TPinv._mat[0][3] = -px * one_over_s;
|
|
TPinv._mat[1][0] = tx*py;
|
|
TPinv._mat[1][1] = ty*py + 1.0;
|
|
TPinv._mat[1][2] = tz*py;
|
|
TPinv._mat[1][3] = -py * one_over_s;
|
|
TPinv._mat[2][0] = tx*pz;
|
|
TPinv._mat[2][1] = ty*pz;
|
|
TPinv._mat[2][2] = tz*pz + 1.0;
|
|
TPinv._mat[2][3] = -pz * one_over_s;
|
|
TPinv._mat[3][0] = -tx;
|
|
TPinv._mat[3][1] = -ty;
|
|
TPinv._mat[3][2] = -tz;
|
|
TPinv._mat[3][3] = one_over_s;
|
|
|
|
preMult(TPinv); // Finish computing full inverse of mat
|
|
|
|
#undef px
|
|
#undef py
|
|
#undef pz
|
|
#undef one_over_s
|
|
#undef d
|
|
}
|
|
else // Rightmost column is [0; 0; 0; 1] so it can be ignored
|
|
{
|
|
tx = mat._mat[3][0]; ty = mat._mat[3][1]; tz = mat._mat[3][2];
|
|
|
|
// Compute translation components of mat'
|
|
_mat[3][0] = -(tx*_mat[0][0] + ty*_mat[1][0] + tz*_mat[2][0]);
|
|
_mat[3][1] = -(tx*_mat[0][1] + ty*_mat[1][1] + tz*_mat[2][1]);
|
|
_mat[3][2] = -(tx*_mat[0][2] + ty*_mat[1][2] + tz*_mat[2][2]);
|
|
|
|
#undef tx
|
|
#undef ty
|
|
#undef tz
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
template <class T>
|
|
inline T SGL_ABS(T a)
|
|
{
|
|
return (a >= 0 ? a : -a);
|
|
}
|
|
|
|
#ifndef SGL_SWAP
|
|
#define SGL_SWAP(a,b,temp) ((temp)=(a),(a)=(b),(b)=(temp))
|
|
#endif
|
|
|
|
bool Matrix_implementation::invert_4x4( const Matrix_implementation& mat )
|
|
{
|
|
if (&mat==this) {
|
|
Matrix_implementation tm(mat);
|
|
return invert_4x4(tm);
|
|
}
|
|
|
|
unsigned int indxc[4], indxr[4], ipiv[4];
|
|
unsigned int i,j,k,l,ll;
|
|
unsigned int icol = 0;
|
|
unsigned int irow = 0;
|
|
double temp, pivinv, dum, big;
|
|
|
|
// copy in place this may be unnecessary
|
|
*this = mat;
|
|
|
|
for (j=0; j<4; j++) ipiv[j]=0;
|
|
|
|
for(i=0;i<4;i++)
|
|
{
|
|
big=0.0;
|
|
for (j=0; j<4; j++)
|
|
if (ipiv[j] != 1)
|
|
for (k=0; k<4; k++)
|
|
{
|
|
if (ipiv[k] == 0)
|
|
{
|
|
if (SGL_ABS(operator()(j,k)) >= big)
|
|
{
|
|
big = SGL_ABS(operator()(j,k));
|
|
irow=j;
|
|
icol=k;
|
|
}
|
|
}
|
|
else if (ipiv[k] > 1)
|
|
return false;
|
|
}
|
|
++(ipiv[icol]);
|
|
if (irow != icol)
|
|
for (l=0; l<4; l++) SGL_SWAP(operator()(irow,l),
|
|
operator()(icol,l),
|
|
temp);
|
|
|
|
indxr[i]=irow;
|
|
indxc[i]=icol;
|
|
if (operator()(icol,icol) == 0)
|
|
return false;
|
|
|
|
pivinv = 1.0/operator()(icol,icol);
|
|
operator()(icol,icol) = 1;
|
|
for (l=0; l<4; l++) operator()(icol,l) *= pivinv;
|
|
for (ll=0; ll<4; ll++)
|
|
if (ll != icol)
|
|
{
|
|
dum=operator()(ll,icol);
|
|
operator()(ll,icol) = 0;
|
|
for (l=0; l<4; l++) operator()(ll,l) -= operator()(icol,l)*dum;
|
|
}
|
|
}
|
|
for (int lx=4; lx>0; --lx)
|
|
{
|
|
if (indxr[lx-1] != indxc[lx-1])
|
|
for (k=0; k<4; k++) SGL_SWAP(operator()(k,indxr[lx-1]),
|
|
operator()(k,indxc[lx-1]),temp);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void Matrix_implementation::makeOrtho(double left, double right,
|
|
double bottom, double top,
|
|
double zNear, double zFar)
|
|
{
|
|
// note transpose of Matrix_implementation wr.t OpenGL documentation, since the OSG use post multiplication rather than pre.
|
|
double tx = -(right+left)/(right-left);
|
|
double ty = -(top+bottom)/(top-bottom);
|
|
double tz = -(zFar+zNear)/(zFar-zNear);
|
|
SET_ROW(0, 2.0/(right-left), 0.0, 0.0, 0.0 )
|
|
SET_ROW(1, 0.0, 2.0/(top-bottom), 0.0, 0.0 )
|
|
SET_ROW(2, 0.0, 0.0, -2.0/(zFar-zNear), 0.0 )
|
|
SET_ROW(3, tx, ty, tz, 1.0 )
|
|
}
|
|
|
|
bool Matrix_implementation::getOrtho(double& left, double& right,
|
|
double& bottom, double& top,
|
|
double& zNear, double& zFar) const
|
|
{
|
|
if (_mat[0][3]!=0.0 || _mat[1][3]!=0.0 || _mat[2][3]!=0.0 || _mat[3][3]!=1.0) return false;
|
|
|
|
zNear = (_mat[3][2]+1.0) / _mat[2][2];
|
|
zFar = (_mat[3][2]-1.0) / _mat[2][2];
|
|
|
|
left = -(1.0+_mat[3][0]) / _mat[0][0];
|
|
right = (1.0-_mat[3][0]) / _mat[0][0];
|
|
|
|
bottom = -(1.0+_mat[3][1]) / _mat[1][1];
|
|
top = (1.0-_mat[3][1]) / _mat[1][1];
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
void Matrix_implementation::makeFrustum(double left, double right,
|
|
double bottom, double top,
|
|
double zNear, double zFar)
|
|
{
|
|
// note transpose of Matrix_implementation wr.t OpenGL documentation, since the OSG use post multiplication rather than pre.
|
|
double A = (right+left)/(right-left);
|
|
double B = (top+bottom)/(top-bottom);
|
|
double C = -(zFar+zNear)/(zFar-zNear);
|
|
double D = -2.0*zFar*zNear/(zFar-zNear);
|
|
SET_ROW(0, 2.0*zNear/(right-left), 0.0, 0.0, 0.0 )
|
|
SET_ROW(1, 0.0, 2.0*zNear/(top-bottom), 0.0, 0.0 )
|
|
SET_ROW(2, A, B, C, -1.0 )
|
|
SET_ROW(3, 0.0, 0.0, D, 0.0 )
|
|
}
|
|
|
|
bool Matrix_implementation::getFrustum(double& left, double& right,
|
|
double& bottom, double& top,
|
|
double& zNear, double& zFar) const
|
|
{
|
|
if (_mat[0][3]!=0.0 || _mat[1][3]!=0.0 || _mat[2][3]!=-1.0 || _mat[3][3]!=0.0) return false;
|
|
|
|
|
|
zNear = _mat[3][2] / (_mat[2][2]-1.0);
|
|
zFar = _mat[3][2] / (1.0+_mat[2][2]);
|
|
|
|
left = zNear * (_mat[2][0]-1.0) / _mat[0][0];
|
|
right = zNear * (1.0+_mat[2][0]) / _mat[0][0];
|
|
|
|
top = zNear * (1.0+_mat[2][1]) / _mat[1][1];
|
|
bottom = zNear * (_mat[2][1]-1.0) / _mat[1][1];
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
void Matrix_implementation::makePerspective(double fovy,double aspectRatio,
|
|
double zNear, double zFar)
|
|
{
|
|
// calculate the appropriate left, right etc.
|
|
double tan_fovy = tan(DegreesToRadians(fovy*0.5));
|
|
double right = tan_fovy * aspectRatio * zNear;
|
|
double left = -right;
|
|
double top = tan_fovy * zNear;
|
|
double bottom = -top;
|
|
makeFrustum(left,right,bottom,top,zNear,zFar);
|
|
}
|
|
|
|
bool Matrix_implementation::getPerspective(double& fovy,double& aspectRatio,
|
|
double& zNear, double& zFar) const
|
|
{
|
|
double right = 0.0;
|
|
double left = 0.0;
|
|
double top = 0.0;
|
|
double bottom = 0.0;
|
|
if (getFrustum(left,right,bottom,top,zNear,zFar))
|
|
{
|
|
fovy = RadiansToDegrees(atan(top/zNear)-atan(bottom/zNear));
|
|
aspectRatio = (right-left)/(top-bottom);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void Matrix_implementation::makeLookAt(const Vec3d& eye,const Vec3d& center,const Vec3d& up)
|
|
{
|
|
Vec3d f(center-eye);
|
|
f.normalize();
|
|
Vec3d s(f^up);
|
|
s.normalize();
|
|
Vec3d u(s^f);
|
|
u.normalize();
|
|
|
|
set(
|
|
s[0], u[0], -f[0], 0.0,
|
|
s[1], u[1], -f[1], 0.0,
|
|
s[2], u[2], -f[2], 0.0,
|
|
0.0, 0.0, 0.0, 1.0);
|
|
|
|
preMult(Matrix_implementation::translate(-eye));
|
|
}
|
|
|
|
|
|
void Matrix_implementation::getLookAt(Vec3f& eye,Vec3f& center,Vec3f& up,value_type lookDistance) const
|
|
{
|
|
Matrix_implementation inv;
|
|
inv.invert(*this);
|
|
eye = osg::Vec3f(0.0,0.0,0.0)*inv;
|
|
up = transform3x3(*this,osg::Vec3f(0.0,1.0,0.0));
|
|
center = transform3x3(*this,osg::Vec3f(0.0,0.0,-1));
|
|
center.normalize();
|
|
center = eye + center*lookDistance;
|
|
}
|
|
|
|
void Matrix_implementation::getLookAt(Vec3d& eye,Vec3d& center,Vec3d& up,value_type lookDistance) const
|
|
{
|
|
Matrix_implementation inv;
|
|
inv.invert(*this);
|
|
eye = osg::Vec3d(0.0,0.0,0.0)*inv;
|
|
up = transform3x3(*this,osg::Vec3d(0.0,1.0,0.0));
|
|
center = transform3x3(*this,osg::Vec3d(0.0,0.0,-1));
|
|
center.normalize();
|
|
center = eye + center*lookDistance;
|
|
}
|
|
|
|
#undef SET_ROW
|