OpenSceneGraph/include/osg/Matrixf
Robert Osfield 792bba05b9 Added new Matrixf and Matrixd implementations.
Made Matrix be a typedef to either Matrixf or Matrixd.  Defaults to Matrixf.

Converted the osgGA::MatrixManipulators and osgProducer::Viewer/OsgCameraGroup
across to using exclusively Matrixd for internal computations and passing betwen
Manipulators, Producer and SceneView. Note, SceneView still uses Matrix internally
so will depend on what is set as the default in include/osg/Matrix.

Added the ability to osgProducer::setDone/getDone(), kept done() as the
method that the viewer main loop uses for detecting the exit condition.
2003-09-05 22:35:34 +00:00

472 lines
17 KiB
C++

/* -*-c++-*- OpenSceneGraph - Copyright (C) 1998-2003 Robert Osfield
*
* This library is open source and may be redistributed and/or modified under
* the terms of the OpenSceneGraph Public License (OSGPL) version 0.0 or
* (at your option) any later version. The full license is in LICENSE file
* included with this distribution, and on the openscenegraph.org website.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* OpenSceneGraph Public License for more details.
*/
#ifndef OSG_MATRIXF
#define OSG_MATRIXF 1
#include <osg/Object>
#include <osg/Vec3>
#include <osg/Vec4>
#include <osg/Quat>
#include <string.h>
#include <iostream>
#include <algorithm>
namespace osg {
class SG_EXPORT Matrixf
{
public:
typedef float value_type;
inline Matrixf() { makeIdentity(); }
inline Matrixf( const Matrixf& mat) { set(mat.ptr()); }
Matrixf( const Matrixd& mat );
inline explicit Matrixf( float const * const ptr ) { set(ptr); }
inline explicit Matrixf( double const * const ptr ) { set(ptr); }
inline explicit Matrixf( const Quat& quat ) { set(quat); }
Matrixf( value_type a00, value_type a01, value_type a02, value_type a03,
value_type a10, value_type a11, value_type a12, value_type a13,
value_type a20, value_type a21, value_type a22, value_type a23,
value_type a30, value_type a31, value_type a32, value_type a33);
~Matrixf() {}
int compare(const Matrixf& m) const { return memcmp(_mat,m._mat,sizeof(_mat)); }
bool operator < (const Matrixf& m) const { return compare(m)<0; }
bool operator == (const Matrixf& m) const { return compare(m)==0; }
bool operator != (const Matrixf& m) const { return compare(m)!=0; }
inline value_type& operator()(int row, int col) { return _mat[row][col]; }
inline value_type operator()(int row, int col) const { return _mat[row][col]; }
inline bool valid() const { return !isNaN(); }
inline bool isNaN() const { return osg::isNaN(_mat[0][0]) || osg::isNaN(_mat[0][1]) || osg::isNaN(_mat[0][2]) || osg::isNaN(_mat[0][3]) ||
osg::isNaN(_mat[1][0]) || osg::isNaN(_mat[1][1]) || osg::isNaN(_mat[1][2]) || osg::isNaN(_mat[1][3]) ||
osg::isNaN(_mat[2][0]) || osg::isNaN(_mat[2][1]) || osg::isNaN(_mat[2][2]) || osg::isNaN(_mat[2][3]) ||
osg::isNaN(_mat[3][0]) || osg::isNaN(_mat[3][1]) || osg::isNaN(_mat[3][2]) || osg::isNaN(_mat[3][3]); }
inline Matrixf& operator = (const Matrixf& rhs)
{
if( &rhs == this ) return *this;
set(rhs.ptr());
return *this;
}
Matrixf& operator = (const Matrixd& rhs);
void set(const Matrixd& rhs);
inline void set(const Matrixf& rhs) { set(rhs.ptr()); }
inline void set(float const * const ptr)
{
value_type* local_ptr = (value_type*)_mat;
for(int i=0;i<16;++i) local_ptr[i]=(value_type)ptr[i];
}
inline void set(double const * const ptr)
{
value_type* local_ptr = (value_type*)_mat;
for(int i=0;i<16;++i) local_ptr[i]=(value_type)ptr[i];
}
void set( value_type a00, value_type a01, value_type a02, value_type a03,
value_type a10, value_type a11, value_type a12, value_type a13,
value_type a20, value_type a21, value_type a22, value_type a23,
value_type a30, value_type a31, value_type a32, value_type a33);
void set(const Quat& q);
void get(Quat& q) const;
value_type * ptr() { return (value_type*)_mat; }
const value_type * ptr() const { return (const value_type *)_mat; }
void makeIdentity();
void makeScale( const Vec3& );
void makeScale( value_type, value_type, value_type );
void makeTranslate( const Vec3& );
void makeTranslate( value_type, value_type, value_type );
void makeRotate( const Vec3& from, const Vec3& to );
void makeRotate( float angle, const Vec3& axis );
void makeRotate( float angle, float x, float y, float z );
void makeRotate( const Quat& );
void makeRotate( float angle1, const Vec3& axis1,
float angle2, const Vec3& axis2,
float angle3, const Vec3& axis3);
/** Set to a orthographic projection. See glOrtho for further details.*/
void makeOrtho(double left, double right,
double bottom, double top,
double zNear, double zFar);
/** Get the othorgraphic settings of the orthographic projection matrix.
* Note, if matrix is not an orthographic matrix then invalid values will be returned.*/
void getOrtho(double& left, double& right,
double& bottom, double& top,
double& zNear, double& zFar);
/** Set to a 2D orthographic projection. See glOrtho2D for further details.*/
inline void makeOrtho2D(double left, double right,
double bottom, double top)
{
makeOrtho(left,right,bottom,top,-1.0,1.0);
}
/** Set to a perspective projection. See glFrustum for further details.*/
void makeFrustum(double left, double right,
double bottom, double top,
double zNear, double zFar);
/** Get the frustum setting of a perspective projection matrix.
* Note, if matrix is not an perspective matrix then invalid values will be returned.*/
void getFrustum(double& left, double& right,
double& bottom, double& top,
double& zNear, double& zFar);
/** Set to a symmetrical perspective projection, See gluPerspective for further details.
* Aspect ratio is defined as width/height.*/
void makePerspective(double fovy,double aspectRatio,
double zNear, double zFar);
/** Set to the position and orientation modelview matrix, using the same convention as gluLookAt. */
void makeLookAt(const Vec3& eye,const Vec3& center,const Vec3& up);
/** Get to the position and orientation of a modelview matrix, using the same convention as gluLookAt. */
void getLookAt(Vec3& eye,Vec3& center,Vec3& up,float lookDistance=1.0f);
bool invert( const Matrixf& );
//basic utility functions to create new matrices
inline static Matrixf identity( void );
inline static Matrixf scale( const Vec3& sv);
inline static Matrixf scale( value_type sx, value_type sy, value_type sz);
inline static Matrixf translate( const Vec3& dv);
inline static Matrixf translate( value_type x, value_type y, value_type z);
inline static Matrixf rotate( const Vec3& from, const Vec3& to);
inline static Matrixf rotate( float angle, float x, float y, float z);
inline static Matrixf rotate( float angle, const Vec3& axis);
inline static Matrixf rotate( float angle1, const Vec3& axis1,
float angle2, const Vec3& axis2,
float angle3, const Vec3& axis3);
inline static Matrixf rotate( const Quat& quat);
inline static Matrixf inverse( const Matrixf& matrix);
/** Create a orthographic projection. See glOrtho for further details.*/
inline static Matrixf ortho(double left, double right,
double bottom, double top,
double zNear, double zFar);
/** Create a 2D orthographic projection. See glOrtho for further details.*/
inline static Matrixf ortho2D(double left, double right,
double bottom, double top);
/** Create a perspective projection. See glFrustum for further details.*/
inline static Matrixf frustum(double left, double right,
double bottom, double top,
double zNear, double zFar);
/** Create a symmetrical perspective projection, See gluPerspective for further details.
* Aspect ratio is defined as width/height.*/
inline static Matrixf perspective(double fovy,double aspectRatio,
double zNear, double zFar);
/** Create the position and orientation as per a camera, using the same convention as gluLookAt. */
inline static Matrixf lookAt(const Vec3& eye,const Vec3& center,const Vec3& up);
inline Vec3 preMult( const Vec3& v ) const;
inline Vec3 postMult( const Vec3& v ) const;
inline Vec3 operator* ( const Vec3& v ) const;
inline Vec4 preMult( const Vec4& v ) const;
inline Vec4 postMult( const Vec4& v ) const;
inline Vec4 operator* ( const Vec4& v ) const;
void setTrans( value_type tx, value_type ty, value_type tz );
void setTrans( const Vec3& v );
inline Vec3 getTrans() const { return Vec3(_mat[3][0],_mat[3][1],_mat[3][2]); }
inline Vec3 getScale() const { return Vec3(_mat[0][0],_mat[1][1],_mat[2][2]); }
/** apply apply an 3x3 transform of v*M[0..2,0..2] */
inline static Vec3 transform3x3(const Vec3& v,const Matrixf& m);
/** apply apply an 3x3 transform of M[0..2,0..2]*v */
inline static Vec3 transform3x3(const Matrixf& m,const Vec3& v);
// basic Matrixf multiplication, our workhorse methods.
void mult( const Matrixf&, const Matrixf& );
void preMult( const Matrixf& );
void postMult( const Matrixf& );
inline void operator *= ( const Matrixf& other )
{ if( this == &other ) {
Matrixf temp(other);
postMult( temp );
}
else postMult( other );
}
inline Matrixf operator * ( const Matrixf &m ) const
{
osg::Matrixf r;
r.mult(*this,m);
return r;
}
protected:
value_type _mat[4][4];
};
class RefMatrixf : public Object, public Matrixf
{
public:
RefMatrixf():Matrixf() {}
RefMatrixf( const Matrixf& other) : Matrixf(other) {}
RefMatrixf( const Matrixd& other) : Matrixf(other) {}
RefMatrixf( const RefMatrixf& other) : Object(other), Matrixf(other) {}
explicit RefMatrixf( Matrixf::value_type const * const def ):Matrixf(def) {}
RefMatrixf( Matrixf::value_type a00, Matrixf::value_type a01, Matrixf::value_type a02, Matrixf::value_type a03,
Matrixf::value_type a10, Matrixf::value_type a11, Matrixf::value_type a12, Matrixf::value_type a13,
Matrixf::value_type a20, Matrixf::value_type a21, Matrixf::value_type a22, Matrixf::value_type a23,
Matrixf::value_type a30, Matrixf::value_type a31, Matrixf::value_type a32, Matrixf::value_type a33):
Matrixf(a00, a01, a02, a03,
a10, a11, a12, a13,
a20, a21, a22, a23,
a30, a31, a32, a33) {}
virtual Object* cloneType() const { return new RefMatrixf(); }
virtual Object* clone(const CopyOp&) const { return new RefMatrixf(*this); }
virtual bool isSameKindAs(const Object* obj) const { return dynamic_cast<const RefMatrixf*>(obj)!=NULL; }
virtual const char* libraryName() const { return "osg"; }
virtual const char* className() const { return "Matrix"; }
protected:
virtual ~RefMatrixf() {}
};
//static utility methods
inline Matrixf Matrixf::identity(void)
{
Matrixf m;
m.makeIdentity();
return m;
}
inline Matrixf Matrixf::scale(value_type sx, value_type sy, value_type sz)
{
Matrixf m;
m.makeScale(sx,sy,sz);
return m;
}
inline Matrixf Matrixf::scale(const Vec3& v )
{
return scale(v.x(), v.y(), v.z() );
}
inline Matrixf Matrixf::translate(value_type tx, value_type ty, value_type tz)
{
Matrixf m;
m.makeTranslate(tx,ty,tz);
return m;
}
inline Matrixf Matrixf::translate(const Vec3& v )
{
return translate(v.x(), v.y(), v.z() );
}
inline Matrixf Matrixf::rotate( const Quat& q )
{
return Matrixf(q);
}
inline Matrixf Matrixf::rotate(float angle, float x, float y, float z )
{
Matrixf m;
m.makeRotate(angle,x,y,z);
return m;
}
inline Matrixf Matrixf::rotate(float angle, const Vec3& axis )
{
Matrixf m;
m.makeRotate(angle,axis);
return m;
}
inline Matrixf Matrixf::rotate( float angle1, const Vec3& axis1,
float angle2, const Vec3& axis2,
float angle3, const Vec3& axis3)
{
Matrixf m;
m.makeRotate(angle1,axis1,angle2,axis2,angle3,axis3);
return m;
}
inline Matrixf Matrixf::rotate(const Vec3& from, const Vec3& to )
{
Matrixf m;
m.makeRotate(from,to);
return m;
}
inline Matrixf Matrixf::inverse( const Matrixf& matrix)
{
Matrixf m;
m.invert(matrix);
return m;
}
inline Matrixf Matrixf::ortho(double left, double right,
double bottom, double top,
double zNear, double zFar)
{
Matrixf m;
m.makeOrtho(left,right,bottom,top,zNear,zFar);
return m;
}
inline Matrixf Matrixf::ortho2D(double left, double right,
double bottom, double top)
{
Matrixf m;
m.makeOrtho2D(left,right,bottom,top);
return m;
}
inline Matrixf Matrixf::frustum(double left, double right,
double bottom, double top,
double zNear, double zFar)
{
Matrixf m;
m.makeFrustum(left,right,bottom,top,zNear,zFar);
return m;
}
inline Matrixf Matrixf::perspective(double fovy,double aspectRatio,
double zNear, double zFar)
{
Matrixf m;
m.makePerspective(fovy,aspectRatio,zNear,zFar);
return m;
}
inline Matrixf Matrixf::lookAt(const Vec3& eye,const Vec3& center,const Vec3& up)
{
Matrixf m;
m.makeLookAt(eye,center,up);
return m;
}
inline Vec3 Matrixf::postMult( const Vec3& v ) const
{
float d = 1.0f/(_mat[3][0]*v.x()+_mat[3][1]*v.y()+_mat[3][2]*v.z()+_mat[3][3]) ;
return Vec3( (_mat[0][0]*v.x() + _mat[0][1]*v.y() + _mat[0][2]*v.z() + _mat[0][3])*d,
(_mat[1][0]*v.x() + _mat[1][1]*v.y() + _mat[1][2]*v.z() + _mat[1][3])*d,
(_mat[2][0]*v.x() + _mat[2][1]*v.y() + _mat[2][2]*v.z() + _mat[2][3])*d) ;
}
inline Vec3 Matrixf::preMult( const Vec3& v ) const
{
float d = 1.0f/(_mat[0][3]*v.x()+_mat[1][3]*v.y()+_mat[2][3]*v.z()+_mat[3][3]) ;
return Vec3( (_mat[0][0]*v.x() + _mat[1][0]*v.y() + _mat[2][0]*v.z() + _mat[3][0])*d,
(_mat[0][1]*v.x() + _mat[1][1]*v.y() + _mat[2][1]*v.z() + _mat[3][1])*d,
(_mat[0][2]*v.x() + _mat[1][2]*v.y() + _mat[2][2]*v.z() + _mat[3][2])*d);
}
inline Vec4 Matrixf::postMult( const Vec4& v ) const
{
return Vec4( (_mat[0][0]*v.x() + _mat[0][1]*v.y() + _mat[0][2]*v.z() + _mat[0][3]*v.w()),
(_mat[1][0]*v.x() + _mat[1][1]*v.y() + _mat[1][2]*v.z() + _mat[1][3]*v.w()),
(_mat[2][0]*v.x() + _mat[2][1]*v.y() + _mat[2][2]*v.z() + _mat[2][3]*v.w()),
(_mat[3][0]*v.x() + _mat[3][1]*v.y() + _mat[3][2]*v.z() + _mat[3][3]*v.w())) ;
}
inline Vec4 Matrixf::preMult( const Vec4& v ) const
{
return Vec4( (_mat[0][0]*v.x() + _mat[1][0]*v.y() + _mat[2][0]*v.z() + _mat[3][0]*v.w()),
(_mat[0][1]*v.x() + _mat[1][1]*v.y() + _mat[2][1]*v.z() + _mat[3][1]*v.w()),
(_mat[0][2]*v.x() + _mat[1][2]*v.y() + _mat[2][2]*v.z() + _mat[3][2]*v.w()),
(_mat[0][3]*v.x() + _mat[1][3]*v.y() + _mat[2][3]*v.z() + _mat[3][3]*v.w()));
}
inline Vec3 Matrixf::transform3x3(const Vec3& v,const Matrixf& m)
{
return Vec3( (m._mat[0][0]*v.x() + m._mat[1][0]*v.y() + m._mat[2][0]*v.z()),
(m._mat[0][1]*v.x() + m._mat[1][1]*v.y() + m._mat[2][1]*v.z()),
(m._mat[0][2]*v.x() + m._mat[1][2]*v.y() + m._mat[2][2]*v.z()));
}
inline Vec3 Matrixf::transform3x3(const Matrixf& m,const Vec3& v)
{
return Vec3( (m._mat[0][0]*v.x() + m._mat[0][1]*v.y() + m._mat[0][2]*v.z()),
(m._mat[1][0]*v.x() + m._mat[1][1]*v.y() + m._mat[1][2]*v.z()),
(m._mat[2][0]*v.x() + m._mat[2][1]*v.y() + m._mat[2][2]*v.z()) ) ;
}
inline Vec3 operator* (const Vec3& v, const Matrixf& m )
{
return m.preMult(v);
}
inline Vec4 operator* (const Vec4& v, const Matrixf& m )
{
return m.preMult(v);
}
inline Vec3 Matrixf::operator* (const Vec3& v) const
{
return postMult(v);
}
inline Vec4 Matrixf::operator* (const Vec4& v) const
{
return postMult(v);
}
inline std::ostream& operator<< (std::ostream& os, const Matrixf& m )
{
os << "{"<<std::endl;
for(int row=0; row<4; ++row) {
os << "\t";
for(int col=0; col<4; ++col)
os << m(row,col) << " ";
os << std::endl;
}
os << "}" << std::endl;
return os;
}
} //namespace osg
#endif