OpenSceneGraph/examples/osgtransferfunction/osgtransferfunction.cpp

579 lines
17 KiB
C++

/* OpenSceneGraph example, osggeometry.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <osg/Geode>
#include <osg/Geometry>
#include <osg/ImageUtils>
#include <osg/MatrixTransform>
#include <osg/PositionAttitudeTransform>
#include <osg/ComputeBoundsVisitor>
#include <osg/io_utils>
#include <osgDB/ReadFile>
#include <osgDB/WriteFile>
#include <osgDB/FileUtils>
#include <osgVolume/Volume>
#include <osgVolume/VolumeTile>
#include <osgVolume/RayTracedTechnique>
#include <osgVolume/FixedFunctionTechnique>
#include <osgViewer/Viewer>
#include <osgViewer/ViewerEventHandlers>
#include "TransferFunctionWidget.h"
class Histogram
{
public:
Histogram() {}
void analyse(const osg::Image* image, double interval=0.0);
void insertZeroBoundaryValues(float xMin=FLT_MAX, float xMax=-FLT_MAX);
osg::Node* createGraphicalRepresentation();
typedef std::map<float, float> ValueMap;
ValueMap& getValueMap() { return _valueMap; }
protected:
ValueMap _valueMap;
};
struct PopulateHistogram
{
PopulateHistogram(Histogram::ValueMap& valueMap):
_histogram(valueMap) {}
float cast(char v) { return v; }
float cast(unsigned char v) { return v; }
float cast(short v) { return v; }
float cast(unsigned short v) { return v; }
float cast(int v) { return v; }
float cast(unsigned int v) { return v; }
float cast(float v) { return v; }
float cast(double v) { return v; }
Histogram::ValueMap& _histogram;
void update(int v)
{
_histogram[v]+=1.0;
}
void normalize()
{
double maxValue = 0;
for(Histogram::ValueMap::iterator itr = _histogram.begin();
itr != _histogram.end();
++itr)
{
if (itr->second>maxValue) maxValue = itr->second;
}
for(Histogram::ValueMap::iterator itr = _histogram.begin();
itr != _histogram.end();
++itr)
{
itr->second /= maxValue;
}
}
void luminance(float l) { update(l); }
void alpha(float a) { update(a); }
void luminance_alpha(float l, float a) { update(l); }
void rgb(float r, float g, float b) { update(r); }
void rgba(float r, float g, float b, float a) { update(a); }
};
void Histogram::analyse(const osg::Image* image, double interval)
{
PopulateHistogram populateHistogram(_valueMap);
readImage(image, populateHistogram);
populateHistogram.normalize();
for(Histogram::ValueMap::iterator itr = populateHistogram._histogram.begin();
itr != populateHistogram._histogram.end();
++itr)
{
OSG_NOTICE<<" "<<itr->first<<", "<<itr->second<<std::endl;
}
}
void Histogram::insertZeroBoundaryValues(float xMin, float xMax)
{
if (_valueMap.empty())
{
if (xMin<xMax)
{
_valueMap[xMin] = 0.0;
_valueMap[xMax] = 0.0;
}
return;
}
float interval = 1.0f;
float min_gap_for_single_insertion = interval*1.5;
float min_gap_for_double_insertion = interval*2.5;
if (xMin<_valueMap.begin()->first)
{
_valueMap[xMin] = 0.0;
}
if (xMax>_valueMap.rbegin()->first)
{
_valueMap[xMax] = 0.0;
}
ValueMap::iterator itr = _valueMap.begin();
float previous_x = itr->first;
for(;
itr != _valueMap.end();
++itr)
{
float current_x = itr->first;
float gap = current_x-previous_x;
if (gap>min_gap_for_double_insertion)
{
_valueMap[previous_x+interval] = 0.0f;
_valueMap[current_x-interval] = 0.0f;
}
else if (gap>min_gap_for_single_insertion)
{
_valueMap[(previous_x+current_x)*0.5]=0.0f;
}
previous_x = current_x;
}
}
osg::Node* Histogram::createGraphicalRepresentation()
{
if (_valueMap.empty()) return 0;
osg::ref_ptr<osg::MatrixTransform> transform = new osg::MatrixTransform;
float xMin = _valueMap.begin()->first;
float xMax = _valueMap.rbegin()->first;
float depth = 0.0f;
float yMax = 0.0f;
// find yMax
for(ValueMap::iterator itr = _valueMap.begin();
itr != _valueMap.end();
++itr)
{
float y = itr->second;
if (y>yMax) yMax = y;
}
float xScale = 1.0f/(xMax-xMin);
float yScale = 1.0f/yMax;
{
osg::ref_ptr<osg::Geode> geode = new osg::Geode;
transform->addChild(geode.get());
osg::ref_ptr<osg::Geometry> geometry = new osg::Geometry;
geode->addDrawable(geometry.get());
geode->getOrCreateStateSet()->setMode(GL_LIGHTING, osg::StateAttribute::OFF);
geode->getOrCreateStateSet()->setMode(GL_BLEND, osg::StateAttribute::ON);
osg::ref_ptr<osg::Vec3Array> vertices = new osg::Vec3Array;
geometry->setVertexArray(vertices.get());
osg::ref_ptr<osg::Vec4Array> colours = new osg::Vec4Array;
geometry->setColorArray(colours.get(), osg::Array::BIND_PER_PRIMITIVE_SET);
colours->push_back(osg::Vec4(1.0,1.0,1.0,1.0));
colours->push_back(osg::Vec4(1.0,1.0,1.0,1.0));
colours->push_back(osg::Vec4(1.0,1.0,1.0,0.1));
unsigned numColumnsRequired = _valueMap.size();
vertices->reserve(numColumnsRequired*3);
for(ValueMap::iterator itr = _valueMap.begin();
itr != _valueMap.end();
++itr)
{
float x = itr->first;
float y = itr->second;
vertices->push_back(osg::Vec3(x*xScale, 0.0f, depth));
vertices->push_back(osg::Vec3(x*xScale, y*yScale, depth));
vertices->push_back(osg::Vec3(x*xScale, yMax*yScale, depth));
}
osg::ref_ptr<osg::DrawElementsUShort> background_primitives = new osg::DrawElementsUShort(GL_TRIANGLE_STRIP);
osg::ref_ptr<osg::DrawElementsUShort> historgram_primitives = new osg::DrawElementsUShort(GL_TRIANGLE_STRIP);
osg::ref_ptr<osg::DrawElementsUShort> outline_primitives = new osg::DrawElementsUShort(GL_LINE_STRIP);
for(unsigned int i=0; i<numColumnsRequired; ++i)
{
int iv = i*3;
background_primitives->push_back(iv+2);
background_primitives->push_back(iv+1);
historgram_primitives->push_back(iv+1);
historgram_primitives->push_back(iv+0);
outline_primitives->push_back(iv+1);
}
geometry->addPrimitiveSet(outline_primitives.get());
geometry->addPrimitiveSet(historgram_primitives.get());
geometry->addPrimitiveSet(background_primitives.get());
}
//transform->setMatrix(osg::Matrix::scale(xScale/(maxX-minY), yScale/(yMax), 1.0f));
transform->setMatrix(osg::Matrix::scale(2.0,1.0,1.0)*osg::Matrix::rotate(osg::DegreesToRadians(90.0), osg::Vec3d(1.0,0.0,0.0)));
return transform.release();
}
osg::TransferFunction1D* readTransferFunctionFile(const std::string& filename, float colorScale=1.0f)
{
std::string foundFile = osgDB::findDataFile(filename);
if (foundFile.empty())
{
std::cout<<"Error: could not find transfer function file : "<<filename<<std::endl;
return 0;
}
std::cout<<"Reading transfer function "<<filename<<std::endl;
osg::TransferFunction1D::ColorMap colorMap;
osgDB::ifstream fin(foundFile.c_str());
while(fin)
{
float value, red, green, blue, alpha;
fin >> value >> red >> green >> blue >> alpha;
if (fin)
{
std::cout<<"value = "<<value<<" ("<<red<<", "<<green<<", "<<blue<<", "<<alpha<<")"<<std::endl;
colorMap[value] = osg::Vec4(red*colorScale,green*colorScale,blue*colorScale,alpha*colorScale);
}
}
if (colorMap.empty())
{
std::cout<<"Error: No values read from transfer function file: "<<filename<<std::endl;
return 0;
}
osg::TransferFunction1D* tf = new osg::TransferFunction1D;
tf->assign(colorMap);
return tf;
}
class FindTransferFunctionPropertyVisitor : public osgVolume::PropertyVisitor
{
public:
osg::ref_ptr<osgVolume::TransferFunctionProperty> _tfp;
#if 0
virtual void apply(osgVolume::SwitchProperty& sp)
{
OSG_NOTICE<<"Found SwitchProperty"<<std::endl;
apply(static_cast<osgVolume::CompositeProperty&>(sp));
}
virtual void apply(osgVolume::CompositeProperty& cp)
{
OSG_NOTICE<<"Found CompositeProperty"<<std::endl;
for(unsigned int i=0; i<cp.getNumProperties(); ++i)
{
cp.getProperty(i)->accept(*this);
}
}
#endif
virtual void apply(osgVolume::TransferFunctionProperty& tfp)
{
OSG_NOTICE<<"Found TransferFunctionProperty "<<&tfp<<std::endl;
_tfp = &tfp;
}
};
class InsertTransferFunctionPropertyVisitor : public osgVolume::PropertyVisitor
{
public:
InsertTransferFunctionPropertyVisitor(osg::TransferFunction1D* tf)
{
_tfp = new osgVolume::TransferFunctionProperty(tf);
}
osg::ref_ptr<osgVolume::TransferFunctionProperty> _tfp;
virtual void apply(osgVolume::SwitchProperty& sp)
{
OSG_NOTICE<<"Found SwitchProperty"<<std::endl;
for(unsigned int i=0; i<sp.getNumProperties(); ++i)
{
sp.getProperty(i)->accept(*this);
}
}
virtual void apply(osgVolume::CompositeProperty& cp)
{
OSG_NOTICE<<"Found CompositeProperty, inserting transfer function"<<std::endl;
if (_tfp.valid()) cp.addProperty(_tfp.get());
}
};
class FindVolumeTiles : public osg::NodeVisitor
{
public:
FindVolumeTiles(): osg::NodeVisitor(osg::NodeVisitor::TRAVERSE_ALL_CHILDREN) {}
typedef std::vector< osg::ref_ptr<osgVolume::VolumeTile> > Tiles;
Tiles _tiles;
void apply(osg::Group& group)
{
osgVolume::VolumeTile* tile = dynamic_cast<osgVolume::VolumeTile*>(&group);
if (tile) _tiles.push_back(tile);
else traverse(group);
}
};
int main(int argc, char ** argv)
{
osg::ArgumentParser arguments(&argc, argv);
osgViewer::Viewer viewer(arguments);
viewer.addEventHandler(new osgViewer::StatsHandler());
osg::ref_ptr<osg::TransferFunction1D> tf;
std::string filename;
if (arguments.read("--tf",filename))
{
tf = readTransferFunctionFile(filename, 1.0f);
}
if (arguments.read("--tf-255",filename))
{
tf = readTransferFunctionFile(filename,1.0f/255.0f);
}
bool createHistorgram = arguments.read("--histogram");
#if 0
for(int i=1; i<arguments.argc(); ++i)
{
if (!arguments.isOption(i))
{
osg::ref_ptr<osg::Image> image;
osg::ref_ptr<osgVolume::Volume> volume;
osg::ref_ptr<osgVolume::VolumeTile> volumeTile;
std::string filename = arguments[i];
osgDB::FileType fileType = osgDB::fileType(foundFile);
if (fileType == osgDB::DIRECTORY)
{
osg::ref_ptr<osg::Image> image = osgDB::readImageFile(foundFile+".dicom", options.get());
}
else if (fileType == osgDB::REGULAR_FILE)
{
std::string ext = osgDB::getFileExtension(foundFile);
if (ext=="osg" || ext=="ive" || ext=="osgx" || ext=="osgb" || ext=="osgt")
{
osg::ref_ptr<osg::Object> obj = osgDB::readObjectFile(foundFile);
image = dynamic_cast<osg::Image*>(obj.get());
volume = dynamic_cast<osgVolume::Volume*>(obj.get());
volumeTile = dynamic_cast<osgVolume::VolumeTile*>(obj.get());
}
else
{
image = osgDB::readImageFile( foundFile );
}
}
else
{
// not found image, so fallback to plugins/callbacks to find the model.
image = osgDB::readImageFile( filename);
}
if (image.valid())
{
volumeTile = new osgVolume::VolumeTile;
}
}
OSG_NOTICE<<"Argument "<<i<<" "<<arguments[i]<<std::endl;
}
return 1;
#else
osg::ref_ptr<osg::Node> model = osgDB::readNodeFiles(arguments);
#endif
typedef std::vector< osg::ref_ptr<osg::Node> > Nodes;
Nodes nodes;
if (!model && !tf)
{
OSG_NOTICE<<"Please specify dataset on command line."<<std::endl;
return 1;
}
osgVolume::ImageLayer* imageLayer = 0;
if (model.valid())
{
osg::ref_ptr<osgVolume::VolumeTile> volumeTile = dynamic_cast<osgVolume::VolumeTile*>(model.get());
if (volumeTile.valid())
{
OSG_NOTICE<<"Inserting Volume above VolumeTile."<<std::endl;
osg::ref_ptr<osgVolume::Volume> volume = new osgVolume::Volume;
volume->addChild(model.get());
model = volume.get();
// volumeTile->setVolumeTechnique(new osgVolume::RayTracedTechnique);
// volumeTile->setVolumeTechnique(new osgVolume::FixedFunctionTechnique);
}
nodes.push_back(model.get());
FindVolumeTiles fvt;
model->accept(fvt);
if (!fvt._tiles.empty())
{
osgVolume::VolumeTile* tile = fvt._tiles[0].get();
imageLayer = dynamic_cast<osgVolume::ImageLayer*>(tile->getLayer());
tile->addEventCallback(new osgVolume::PropertyAdjustmentCallback());
}
}
if (createHistorgram && imageLayer)
{
Histogram histogram;
histogram.analyse(imageLayer->getImage());
nodes.push_back(histogram.createGraphicalRepresentation());
}
if (imageLayer)
{
osgVolume::Property* property = imageLayer->getProperty();
if (property)
{
FindTransferFunctionPropertyVisitor ftfpv;
property->accept(ftfpv);
if (ftfpv._tfp.valid())
{
if (tf.valid())
{
OSG_NOTICE<<"Need to replace volumes transfer function"<<std::endl;
ftfpv._tfp->setTransferFunction(tf.get());
}
else
{
OSG_NOTICE<<"Using volumes transfer function"<<std::endl;
tf = dynamic_cast<osg::TransferFunction1D*>(ftfpv._tfp->getTransferFunction());
}
}
else if (tf.valid())
{
// No exisitng trasfer function but need to assign one
OSG_NOTICE<<"Need to assign transfer function to CompositeProperty"<<std::endl;
InsertTransferFunctionPropertyVisitor itfpv(tf.get());
property->accept(itfpv);
}
}
else if (tf.valid())
{
OSG_NOTICE<<"Assign transfer function directly"<<std::endl;
imageLayer->setProperty(new osgVolume::TransferFunctionProperty(tf.get()));
}
}
if (tf.valid())
{
osg::ref_ptr<osg::MatrixTransform> transform = new osg::MatrixTransform;
transform->setMatrix(osg::Matrix::scale(2.0,1.0,1.0)*osg::Matrix::rotate(osg::DegreesToRadians(90.0), osg::Vec3d(1.0,0.0,0.0)));
transform->addChild(new osgUI::TransferFunctionWidget(tf.get()));
nodes.push_back(transform.get());
}
if (nodes.empty())
{
OSG_NOTICE<<"Please specify dataset on command line."<<std::endl;
return 1;
}
if (nodes.size()==1)
{
viewer.setSceneData(nodes[0].get());
}
else
{
osg::Vec3d position(0.0,0.0,0.0);
osg::ref_ptr<osg::Group> group = new osg::Group;
for(Nodes::iterator itr = nodes.begin();
itr != nodes.end();
++itr)
{
osg::ref_ptr<osg::Node> child = *itr;
if (!child) continue;
#if 0
osg::ComputeBoundsVisitor cbv;
child->accept(cbv);
osg::BoundingBox bb = cbv.getBoundingBox();
double scale = 1.0/(bb.xMax()-bb.xMin());
#endif
osg::BoundingSphere bb = child->getBound();
double scale = 0.7/bb.radius();
osg::ref_ptr<osg::PositionAttitudeTransform> pat = new osg::PositionAttitudeTransform;
pat->addChild(child.get());
pat->setPosition(position);
pat->setPivotPoint(bb.center());
pat->setScale(osg::Vec3d(scale, scale, scale));
position.x() += 1.1;
group->addChild(pat.get());
}
viewer.setSceneData(group.get());
}
OSG_NOTICE<<"Reading to run viewer"<<std::endl;
osgDB::writeNodeFile(*viewer.getSceneData(),"graph.osgt");
return viewer.run();
}