c1283c23e8
which was being picked as a warning under Codewarrior.
295 lines
9.5 KiB
Plaintext
295 lines
9.5 KiB
Plaintext
//C++ header - Open Scene Graph - Copyright (C) 1998-2001 Robert Osfield
|
|
//Distributed under the terms of the GNU Library General Public License (LGPL)
|
|
//as published by the Free Software Foundation.
|
|
|
|
#ifndef OSG_MATRIX
|
|
#define OSG_MATRIX 1
|
|
|
|
#include <osg/Object>
|
|
#include <osg/Vec3>
|
|
#include <osg/Vec4>
|
|
|
|
#include <iostream>
|
|
|
|
namespace osg {
|
|
|
|
class Quat;
|
|
|
|
class SG_EXPORT Matrix : public Object
|
|
{
|
|
|
|
public:
|
|
|
|
Matrix();
|
|
Matrix( const Matrix& other);
|
|
explicit Matrix( float const * const def );
|
|
Matrix( float a00, float a01, float a02, float a03,
|
|
float a10, float a11, float a12, float a13,
|
|
float a20, float a21, float a22, float a23,
|
|
float a30, float a31, float a32, float a33);
|
|
|
|
virtual Object* cloneType() const { return new Matrix(); } \
|
|
virtual Object* clone(const CopyOp&) const { return new Matrix(*this); } \
|
|
virtual bool isSameKindAs(const Object* obj) const { return dynamic_cast<const Matrix*>(obj)!=NULL; } \
|
|
virtual const char* className() const { return "Matrix"; }
|
|
|
|
virtual ~Matrix() {}
|
|
|
|
Matrix& operator = (const Matrix& );
|
|
|
|
int compare(const Matrix& m) const { ensureRealized(); m.ensureRealized(); return memcmp(_mat,m._mat,sizeof(_mat)); }
|
|
|
|
bool operator < (const Matrix& m) const { return compare(m)<0; }
|
|
bool operator == (const Matrix& m) const { return compare(m)==0; }
|
|
bool operator != (const Matrix& m) const { return compare(m)!=0; }
|
|
|
|
inline float& operator()(int row, int col) { ensureRealized(); return _mat[row][col]; }
|
|
inline float operator()(int row, int col) const { ensureRealized(); return _mat[row][col]; }
|
|
|
|
void set( float const * const );
|
|
void set( float a00, float a01, float a02, float a03,
|
|
float a10, float a11, float a12, float a13,
|
|
float a20, float a21, float a22, float a23,
|
|
float a30, float a31, float a32, float a33);
|
|
|
|
float * ptr() { ensureRealized(); return (float *)_mat; }
|
|
const float * ptr() const { ensureRealized(); return (const float *)_mat; }
|
|
|
|
inline void ensureRealized() const { if (!fully_realized) const_cast<Matrix*>(this)->makeIdentity();}
|
|
|
|
void makeIdentity();
|
|
|
|
void makeScale( const Vec3& );
|
|
void makeScale( float, float, float );
|
|
|
|
void makeTranslate( const Vec3& );
|
|
void makeTranslate( float, float, float );
|
|
|
|
void makeRotate( const Vec3& from, const Vec3& to );
|
|
void makeRotate( float angle, const Vec3& axis );
|
|
void makeRotate( float angle, float x, float y, float z );
|
|
void makeRotate( const Quat& );
|
|
void makeRotate( float, float, float ); //Euler angles
|
|
|
|
bool invert( const Matrix& );
|
|
bool invertAffine( const Matrix& );
|
|
|
|
//basic utility functions to create new matrices
|
|
inline static Matrix identity( void );
|
|
inline static Matrix scale( const Vec3& );
|
|
inline static Matrix scale( float, float, float );
|
|
inline static Matrix translate( const Vec3& );
|
|
inline static Matrix translate( float, float, float );
|
|
inline static Matrix rotate( const Vec3&, const Vec3& );
|
|
inline static Matrix rotate( float, float, float, float );
|
|
inline static Matrix rotate( float angle, const Vec3& axis);
|
|
inline static Matrix rotate( const Quat& );
|
|
|
|
inline Vec3 preMult( const Vec3& v ) const;
|
|
inline Vec3 postMult( const Vec3& v ) const;
|
|
inline Vec3 operator* ( const Vec3& v ) const;
|
|
inline Vec4 preMult( const Vec4& v ) const;
|
|
inline Vec4 postMult( const Vec4& v ) const;
|
|
inline Vec4 operator* ( const Vec4& v ) const;
|
|
|
|
void setTrans( float tx, float ty, float tz );
|
|
void setTrans( const Vec3& v );
|
|
Vec3 getTrans() const { ensureRealized(); return Vec3(_mat[3][0],_mat[3][1],_mat[3][2]); }
|
|
|
|
/** apply apply an 3x3 transform of v*M[0..2,0..2] */
|
|
inline static Vec3 transform3x3(const Vec3& v,const Matrix& m);
|
|
/** apply apply an 3x3 transform of M[0..2,0..2]*v */
|
|
inline static Vec3 transform3x3(const Matrix& m,const Vec3& v);
|
|
|
|
|
|
// basic Matrix multiplication, our workhorse methods.
|
|
void mult( const Matrix&, const Matrix& );
|
|
void preMult( const Matrix& );
|
|
void postMult( const Matrix& );
|
|
|
|
inline void operator *= ( const Matrix& other )
|
|
{ if( this == &other ) {
|
|
Matrix temp(other);
|
|
postMult( temp );
|
|
}
|
|
else postMult( other );
|
|
}
|
|
|
|
inline Matrix operator * ( const Matrix &m ) const
|
|
{
|
|
osg::Matrix r;
|
|
r.mult(*this,m);
|
|
return r;
|
|
}
|
|
|
|
|
|
// temporarily commented out while waiting for a more generic implementation
|
|
// of MatrixProduct proxy class.
|
|
// // Helper class to optimize product expressions somewhat
|
|
// class MatrixProduct {
|
|
// public:
|
|
// const Matrix& A;
|
|
// const Matrix& B;
|
|
//
|
|
// MatrixProduct( const Matrix& lhs, const Matrix& rhs ) : A(lhs), B(rhs) {}
|
|
// };
|
|
//
|
|
// inline MatrixProduct operator * ( const Matrix& other ) const
|
|
// { return MatrixProduct(*this, other); }
|
|
//
|
|
// inline void operator = ( const MatrixProduct& p )
|
|
// {
|
|
// if( this == &(p.A)) postMult(p.B);
|
|
// else if( this == &(p.B)) preMult(p.A);
|
|
// else mult( p.A, p.B );
|
|
// }
|
|
//
|
|
// Matrix( const MatrixProduct& p ) //allows implicit evaluation of the product
|
|
// { mult( p.A, p.B ); }
|
|
|
|
private:
|
|
float _mat[4][4];
|
|
bool fully_realized;
|
|
|
|
};
|
|
|
|
//static utility methods
|
|
inline Matrix Matrix::identity(void)
|
|
{
|
|
Matrix m;
|
|
m.makeIdentity();
|
|
return m;
|
|
}
|
|
|
|
inline Matrix Matrix::scale(float sx, float sy, float sz)
|
|
{
|
|
Matrix m;
|
|
m.makeScale(sx,sy,sz);
|
|
return m;
|
|
}
|
|
|
|
inline Matrix Matrix::scale(const Vec3& v )
|
|
{
|
|
return scale(v.x(), v.y(), v.z() );
|
|
}
|
|
|
|
inline Matrix Matrix::translate(float tx, float ty, float tz)
|
|
{
|
|
Matrix m;
|
|
m.makeTranslate(tx,ty,tz);
|
|
return m;
|
|
}
|
|
|
|
inline Matrix Matrix::translate(const Vec3& v )
|
|
{
|
|
return translate(v.x(), v.y(), v.z() );
|
|
}
|
|
|
|
inline Matrix Matrix::rotate( const Quat& q )
|
|
{
|
|
Matrix m;
|
|
m.makeRotate( q );
|
|
return m;
|
|
}
|
|
inline Matrix Matrix::rotate(float angle, float x, float y, float z )
|
|
{
|
|
Matrix m;
|
|
m.makeRotate(angle,x,y,z);
|
|
return m;
|
|
}
|
|
inline Matrix Matrix::rotate(float angle, const Vec3& axis )
|
|
{
|
|
Matrix m;
|
|
m.makeRotate(angle,axis);
|
|
return m;
|
|
}
|
|
inline Matrix Matrix::rotate(const Vec3& from, const Vec3& to )
|
|
{
|
|
Matrix m;
|
|
m.makeRotate(from,to);
|
|
return m;
|
|
}
|
|
|
|
inline Vec3 Matrix::postMult( const Vec3& v ) const
|
|
{
|
|
float d = 1.0f/(_mat[3][0]*v.x()+_mat[3][1]*v.y()+_mat[3][2]*v.z()+_mat[3][3]) ;
|
|
return Vec3( (_mat[0][0]*v.x() + _mat[0][1]*v.y() + _mat[0][2]*v.z() + _mat[0][3])*d,
|
|
(_mat[1][0]*v.x() + _mat[1][1]*v.y() + _mat[1][2]*v.z() + _mat[1][3])*d,
|
|
(_mat[2][0]*v.x() + _mat[2][1]*v.y() + _mat[2][2]*v.z() + _mat[2][3])*d) ;
|
|
}
|
|
|
|
inline Vec3 Matrix::preMult( const Vec3& v ) const
|
|
{
|
|
float d = 1.0f/(_mat[0][3]*v.x()+_mat[1][3]*v.y()+_mat[2][3]*v.z()+_mat[3][3]) ;
|
|
return Vec3( (_mat[0][0]*v.x() + _mat[1][0]*v.y() + _mat[2][0]*v.z() + _mat[3][0])*d,
|
|
(_mat[0][1]*v.x() + _mat[1][1]*v.y() + _mat[2][1]*v.z() + _mat[3][1])*d,
|
|
(_mat[0][2]*v.x() + _mat[1][2]*v.y() + _mat[2][2]*v.z() + _mat[3][2])*d);
|
|
}
|
|
|
|
inline Vec4 Matrix::postMult( const Vec4& v ) const
|
|
{
|
|
return Vec4( (_mat[0][0]*v.x() + _mat[0][1]*v.y() + _mat[0][2]*v.z() + _mat[0][3]*v.w()),
|
|
(_mat[1][0]*v.x() + _mat[1][1]*v.y() + _mat[1][2]*v.z() + _mat[1][3]*v.w()),
|
|
(_mat[2][0]*v.x() + _mat[2][1]*v.y() + _mat[2][2]*v.z() + _mat[2][3]*v.w()),
|
|
(_mat[3][0]*v.x() + _mat[3][1]*v.y() + _mat[3][2]*v.z() + _mat[3][3]*v.w())) ;
|
|
}
|
|
|
|
inline Vec4 Matrix::preMult( const Vec4& v ) const
|
|
{
|
|
return Vec4( (_mat[0][0]*v.x() + _mat[1][0]*v.y() + _mat[2][0]*v.z() + _mat[3][0]*v.w()),
|
|
(_mat[0][1]*v.x() + _mat[1][1]*v.y() + _mat[2][1]*v.z() + _mat[3][1]*v.w()),
|
|
(_mat[0][2]*v.x() + _mat[1][2]*v.y() + _mat[2][2]*v.z() + _mat[3][2]*v.w()),
|
|
(_mat[0][3]*v.x() + _mat[1][3]*v.y() + _mat[2][3]*v.z() + _mat[3][3]*v.w()));
|
|
}
|
|
inline Vec3 Matrix::transform3x3(const Vec3& v,const Matrix& m)
|
|
{
|
|
return Vec3( (m._mat[0][0]*v.x() + m._mat[1][0]*v.y() + m._mat[2][0]*v.z()),
|
|
(m._mat[0][1]*v.x() + m._mat[1][1]*v.y() + m._mat[2][1]*v.z()),
|
|
(m._mat[0][2]*v.x() + m._mat[1][2]*v.y() + m._mat[2][2]*v.z()));
|
|
}
|
|
|
|
inline Vec3 Matrix::transform3x3(const Matrix& m,const Vec3& v)
|
|
{
|
|
return Vec3( (m._mat[0][0]*v.x() + m._mat[0][1]*v.y() + m._mat[0][2]*v.z()),
|
|
(m._mat[1][0]*v.x() + m._mat[1][1]*v.y() + m._mat[1][2]*v.z()),
|
|
(m._mat[2][0]*v.x() + m._mat[2][1]*v.y() + m._mat[2][2]*v.z()) ) ;
|
|
}
|
|
|
|
|
|
inline Vec3 operator* (const Vec3& v, const Matrix& m )
|
|
{
|
|
return m.preMult(v);
|
|
}
|
|
inline Vec4 operator* (const Vec4& v, const Matrix& m )
|
|
{
|
|
return m.preMult(v);
|
|
}
|
|
|
|
inline Vec3 Matrix::operator* (const Vec3& v) const
|
|
{
|
|
return postMult(v);
|
|
}
|
|
inline Vec4 Matrix::operator* (const Vec4& v) const
|
|
{
|
|
return postMult(v);
|
|
}
|
|
|
|
inline std::ostream& operator<< (std::ostream& os, const Matrix& m )
|
|
{
|
|
os << "{"<<std::endl;
|
|
for(int row=0; row<4; ++row) {
|
|
os << "\t";
|
|
for(int col=0; col<4; ++col)
|
|
os << m(row,col) << " ";
|
|
os << std::endl;
|
|
}
|
|
os << "}" << std::endl;
|
|
return os;
|
|
}
|
|
|
|
|
|
} //namespace osg
|
|
|
|
|
|
#endif
|