OpenSceneGraph/src/osg/Matrix_implementation.cpp
Robert Osfield b15b677cc3 From Mikkel Gjøl, addition of paramter set/get methods to osgGA::*Manipulators,
change of ' ' to GUIEventAdapter::KEY_Space, fix to url in Matrix_implementation.cpp.
Syntax fixes by Robert Osfield to above submission fix inconsistencies with normal
OSG coding style.
2005-11-17 11:03:20 +00:00

851 lines
25 KiB
C++

/* -*-c++-*- OpenSceneGraph - Copyright (C) 1998-2005 Robert Osfield
*
* This library is open source and may be redistributed and/or modified under
* the terms of the OpenSceneGraph Public License (OSGPL) version 0.0 or
* (at your option) any later version. The full license is in LICENSE file
* included with this distribution, and on the openscenegraph.org website.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* OpenSceneGraph Public License for more details.
*/
#include <osg/Quat>
#include <osg/Notify>
#include <osg/Math>
#include <osg/Timer>
#include <osg/GL>
#include <stdlib.h>
using namespace osg;
#define SET_ROW(row, v1, v2, v3, v4 ) \
_mat[(row)][0] = (v1); \
_mat[(row)][1] = (v2); \
_mat[(row)][2] = (v3); \
_mat[(row)][3] = (v4);
#define INNER_PRODUCT(a,b,r,c) \
((a)._mat[r][0] * (b)._mat[0][c]) \
+((a)._mat[r][1] * (b)._mat[1][c]) \
+((a)._mat[r][2] * (b)._mat[2][c]) \
+((a)._mat[r][3] * (b)._mat[3][c])
Matrix_implementation::Matrix_implementation( value_type a00, value_type a01, value_type a02, value_type a03,
value_type a10, value_type a11, value_type a12, value_type a13,
value_type a20, value_type a21, value_type a22, value_type a23,
value_type a30, value_type a31, value_type a32, value_type a33)
{
SET_ROW(0, a00, a01, a02, a03 )
SET_ROW(1, a10, a11, a12, a13 )
SET_ROW(2, a20, a21, a22, a23 )
SET_ROW(3, a30, a31, a32, a33 )
}
void Matrix_implementation::set( value_type a00, value_type a01, value_type a02, value_type a03,
value_type a10, value_type a11, value_type a12, value_type a13,
value_type a20, value_type a21, value_type a22, value_type a23,
value_type a30, value_type a31, value_type a32, value_type a33)
{
SET_ROW(0, a00, a01, a02, a03 )
SET_ROW(1, a10, a11, a12, a13 )
SET_ROW(2, a20, a21, a22, a23 )
SET_ROW(3, a30, a31, a32, a33 )
}
#define QX q._v[0]
#define QY q._v[1]
#define QZ q._v[2]
#define QW q._v[3]
void Matrix_implementation::set(const Quat& q_in)
{
Quat q(q_in);
double length2 = q.length2();
if (length2!=1.0 && length2!=0)
{
// normalize quat if required.
q /= sqrt(length2);
}
// Source: Gamasutra, Rotating Objects Using Quaternions
//
//http://www.gamasutra.com/features/19980703/quaternions_01.htm
double wx, wy, wz, xx, yy, yz, xy, xz, zz, x2, y2, z2;
// calculate coefficients
x2 = QX + QX;
y2 = QY + QY;
z2 = QZ + QZ;
xx = QX * x2;
xy = QX * y2;
xz = QX * z2;
yy = QY * y2;
yz = QY * z2;
zz = QZ * z2;
wx = QW * x2;
wy = QW * y2;
wz = QW * z2;
// Note. Gamasutra gets the matrix assignments inverted, resulting
// in left-handed rotations, which is contrary to OpenGL and OSG's
// methodology. The matrix assignment has been altered in the next
// few lines of code to do the right thing.
// Don Burns - Oct 13, 2001
_mat[0][0] = 1.0 - (yy + zz);
_mat[1][0] = xy - wz;
_mat[2][0] = xz + wy;
_mat[3][0] = 0.0;
_mat[0][1] = xy + wz;
_mat[1][1] = 1.0 - (xx + zz);
_mat[2][1] = yz - wx;
_mat[3][1] = 0.0;
_mat[0][2] = xz - wy;
_mat[1][2] = yz + wx;
_mat[2][2] = 1.0 - (xx + yy);
_mat[3][2] = 0.0;
_mat[0][3] = 0.0;
_mat[1][3] = 0.0;
_mat[2][3] = 0.0;
_mat[3][3] = 1.0;
}
void Matrix_implementation::get( Quat& q ) const
{
// Source: Gamasutra, Rotating Objects Using Quaternions
//
//http://www.gamasutra.com/features/programming/19980703/quaternions_01.htm
value_type tr, s;
value_type tq[4];
int i, j, k;
int nxt[3] = {1, 2, 0};
tr = _mat[0][0] + _mat[1][1] + _mat[2][2]+1.0;
// check the diagonal
if (tr > 0.0)
{
s = (value_type)sqrt (tr);
QW = s / 2.0;
s = 0.5 / s;
QX = (_mat[1][2] - _mat[2][1]) * s;
QY = (_mat[2][0] - _mat[0][2]) * s;
QZ = (_mat[0][1] - _mat[1][0]) * s;
}
else
{
// diagonal is negative
i = 0;
if (_mat[1][1] > _mat[0][0])
i = 1;
if (_mat[2][2] > _mat[i][i])
i = 2;
j = nxt[i];
k = nxt[j];
s = (value_type)sqrt ((_mat[i][i] - (_mat[j][j] + _mat[k][k])) + 1.0);
tq[i] = s * 0.5;
if (s != 0.0)
s = 0.5 / s;
tq[3] = (_mat[j][k] - _mat[k][j]) * s;
tq[j] = (_mat[i][j] + _mat[j][i]) * s;
tq[k] = (_mat[i][k] + _mat[k][i]) * s;
QX = tq[0];
QY = tq[1];
QZ = tq[2];
QW = tq[3];
}
}
int Matrix_implementation::compare(const Matrix_implementation& m) const
{
const Matrix_implementation::value_type* lhs = reinterpret_cast<const Matrix_implementation::value_type*>(_mat);
const Matrix_implementation::value_type* end_lhs = lhs+16;
const Matrix_implementation::value_type* rhs = reinterpret_cast<const Matrix_implementation::value_type*>(m._mat);
for(;lhs!=end_lhs;++lhs,++rhs)
{
if (*lhs < *rhs) return -1;
if (*rhs < *lhs) return 1;
}
return 0;
}
void Matrix_implementation::setTrans( value_type tx, value_type ty, value_type tz )
{
_mat[3][0] = tx;
_mat[3][1] = ty;
_mat[3][2] = tz;
}
void Matrix_implementation::setTrans( const Vec3f& v )
{
_mat[3][0] = v[0];
_mat[3][1] = v[1];
_mat[3][2] = v[2];
}
void Matrix_implementation::setTrans( const Vec3d& v )
{
_mat[3][0] = v[0];
_mat[3][1] = v[1];
_mat[3][2] = v[2];
}
void Matrix_implementation::makeIdentity()
{
SET_ROW(0, 1, 0, 0, 0 )
SET_ROW(1, 0, 1, 0, 0 )
SET_ROW(2, 0, 0, 1, 0 )
SET_ROW(3, 0, 0, 0, 1 )
}
void Matrix_implementation::makeScale( const Vec3f& v )
{
makeScale(v[0], v[1], v[2] );
}
void Matrix_implementation::makeScale( const Vec3d& v )
{
makeScale(v[0], v[1], v[2] );
}
void Matrix_implementation::makeScale( value_type x, value_type y, value_type z )
{
SET_ROW(0, x, 0, 0, 0 )
SET_ROW(1, 0, y, 0, 0 )
SET_ROW(2, 0, 0, z, 0 )
SET_ROW(3, 0, 0, 0, 1 )
}
void Matrix_implementation::makeTranslate( const Vec3f& v )
{
makeTranslate( v[0], v[1], v[2] );
}
void Matrix_implementation::makeTranslate( const Vec3d& v )
{
makeTranslate( v[0], v[1], v[2] );
}
void Matrix_implementation::makeTranslate( value_type x, value_type y, value_type z )
{
SET_ROW(0, 1, 0, 0, 0 )
SET_ROW(1, 0, 1, 0, 0 )
SET_ROW(2, 0, 0, 1, 0 )
SET_ROW(3, x, y, z, 1 )
}
void Matrix_implementation::makeRotate( const Vec3f& from, const Vec3f& to )
{
Quat quat;
quat.makeRotate(from,to);
set(quat);
}
void Matrix_implementation::makeRotate( const Vec3d& from, const Vec3d& to )
{
Quat quat;
quat.makeRotate(from,to);
set(quat);
}
void Matrix_implementation::makeRotate( value_type angle, const Vec3f& axis )
{
Quat quat;
quat.makeRotate( angle, axis);
set(quat);
}
void Matrix_implementation::makeRotate( value_type angle, const Vec3d& axis )
{
Quat quat;
quat.makeRotate( angle, axis);
set(quat);
}
void Matrix_implementation::makeRotate( value_type angle, value_type x, value_type y, value_type z )
{
Quat quat;
quat.makeRotate( angle, x, y, z);
set(quat);
}
void Matrix_implementation::makeRotate( const Quat& quat )
{
set(quat);
}
void Matrix_implementation::makeRotate( value_type angle1, const Vec3f& axis1,
value_type angle2, const Vec3f& axis2,
value_type angle3, const Vec3f& axis3)
{
Quat quat;
quat.makeRotate(angle1, axis1,
angle2, axis2,
angle3, axis3);
set(quat);
}
void Matrix_implementation::makeRotate( value_type angle1, const Vec3d& axis1,
value_type angle2, const Vec3d& axis2,
value_type angle3, const Vec3d& axis3)
{
Quat quat;
quat.makeRotate(angle1, axis1,
angle2, axis2,
angle3, axis3);
set(quat);
}
void Matrix_implementation::mult( const Matrix_implementation& lhs, const Matrix_implementation& rhs )
{
if (&lhs==this)
{
postMult(rhs);
return;
}
if (&rhs==this)
{
preMult(lhs);
return;
}
// PRECONDITION: We assume neither &lhs nor &rhs == this
// if it did, use preMult or postMult instead
_mat[0][0] = INNER_PRODUCT(lhs, rhs, 0, 0);
_mat[0][1] = INNER_PRODUCT(lhs, rhs, 0, 1);
_mat[0][2] = INNER_PRODUCT(lhs, rhs, 0, 2);
_mat[0][3] = INNER_PRODUCT(lhs, rhs, 0, 3);
_mat[1][0] = INNER_PRODUCT(lhs, rhs, 1, 0);
_mat[1][1] = INNER_PRODUCT(lhs, rhs, 1, 1);
_mat[1][2] = INNER_PRODUCT(lhs, rhs, 1, 2);
_mat[1][3] = INNER_PRODUCT(lhs, rhs, 1, 3);
_mat[2][0] = INNER_PRODUCT(lhs, rhs, 2, 0);
_mat[2][1] = INNER_PRODUCT(lhs, rhs, 2, 1);
_mat[2][2] = INNER_PRODUCT(lhs, rhs, 2, 2);
_mat[2][3] = INNER_PRODUCT(lhs, rhs, 2, 3);
_mat[3][0] = INNER_PRODUCT(lhs, rhs, 3, 0);
_mat[3][1] = INNER_PRODUCT(lhs, rhs, 3, 1);
_mat[3][2] = INNER_PRODUCT(lhs, rhs, 3, 2);
_mat[3][3] = INNER_PRODUCT(lhs, rhs, 3, 3);
}
void Matrix_implementation::preMult( const Matrix_implementation& other )
{
// brute force method requiring a copy
//Matrix_implementation tmp(other* *this);
// *this = tmp;
// more efficient method just use a value_type[4] for temporary storage.
value_type t[4];
for(int col=0; col<4; ++col) {
t[0] = INNER_PRODUCT( other, *this, 0, col );
t[1] = INNER_PRODUCT( other, *this, 1, col );
t[2] = INNER_PRODUCT( other, *this, 2, col );
t[3] = INNER_PRODUCT( other, *this, 3, col );
_mat[0][col] = t[0];
_mat[1][col] = t[1];
_mat[2][col] = t[2];
_mat[3][col] = t[3];
}
}
void Matrix_implementation::postMult( const Matrix_implementation& other )
{
// brute force method requiring a copy
//Matrix_implementation tmp(*this * other);
// *this = tmp;
// more efficient method just use a value_type[4] for temporary storage.
value_type t[4];
for(int row=0; row<4; ++row)
{
t[0] = INNER_PRODUCT( *this, other, row, 0 );
t[1] = INNER_PRODUCT( *this, other, row, 1 );
t[2] = INNER_PRODUCT( *this, other, row, 2 );
t[3] = INNER_PRODUCT( *this, other, row, 3 );
SET_ROW(row, t[0], t[1], t[2], t[3] )
}
}
#undef INNER_PRODUCT
// orthoNormalize the 3x3 rotation matrix
void Matrix_implementation::orthoNormalize(const Matrix_implementation& rhs)
{
value_type x_colMag = (rhs._mat[0][0] * rhs._mat[0][0]) + (rhs._mat[1][0] * rhs._mat[1][0]) + (rhs._mat[2][0] * rhs._mat[2][0]);
value_type y_colMag = (rhs._mat[0][1] * rhs._mat[0][1]) + (rhs._mat[1][1] * rhs._mat[1][1]) + (rhs._mat[2][1] * rhs._mat[2][1]);
value_type z_colMag = (rhs._mat[0][2] * rhs._mat[0][2]) + (rhs._mat[1][2] * rhs._mat[1][2]) + (rhs._mat[2][2] * rhs._mat[2][2]);
if(!equivalent((double)x_colMag, 1.0) && !equivalent((double)x_colMag, 0.0))
{
x_colMag = sqrt(x_colMag);
_mat[0][0] = rhs._mat[0][0] / x_colMag;
_mat[1][0] = rhs._mat[1][0] / x_colMag;
_mat[2][0] = rhs._mat[2][0] / x_colMag;
}
else
{
_mat[0][0] = rhs._mat[0][0];
_mat[1][0] = rhs._mat[1][0];
_mat[2][0] = rhs._mat[2][0];
}
if(!equivalent((double)y_colMag, 1.0) && !equivalent((double)y_colMag, 0.0))
{
y_colMag = sqrt(y_colMag);
_mat[0][1] = rhs._mat[0][1] / y_colMag;
_mat[1][1] = rhs._mat[1][1] / y_colMag;
_mat[2][1] = rhs._mat[2][1] / y_colMag;
}
else
{
_mat[0][1] = rhs._mat[0][1];
_mat[1][1] = rhs._mat[1][1];
_mat[2][1] = rhs._mat[2][1];
}
if(!equivalent((double)z_colMag, 1.0) && !equivalent((double)z_colMag, 0.0))
{
z_colMag = sqrt(z_colMag);
_mat[0][2] = rhs._mat[0][2] / z_colMag;
_mat[1][2] = rhs._mat[1][2] / z_colMag;
_mat[2][2] = rhs._mat[2][2] / z_colMag;
}
else
{
_mat[0][2] = rhs._mat[0][2];
_mat[1][2] = rhs._mat[1][2];
_mat[2][2] = rhs._mat[2][2];
}
_mat[3][0] = rhs._mat[3][0];
_mat[3][1] = rhs._mat[3][1];
_mat[3][2] = rhs._mat[3][2];
_mat[0][3] = rhs._mat[0][3];
_mat[1][3] = rhs._mat[1][3];
_mat[2][3] = rhs._mat[2][3];
_mat[3][3] = rhs._mat[3][3];
}
bool Matrix_implementation::invert( const Matrix_implementation& rhs)
{
#if 1
return invert_4x4_new(rhs);
#else
static const osg::Timer& timer = *Timer::instance();
Matrix_implementation a;
Matrix_implementation b;
Timer_t t1 = timer.tick();
a.invert_4x4_new(rhs);
Timer_t t2 = timer.tick();
b.invert_4x4_orig(rhs);
Timer_t t3 = timer.tick();
static double new_time = 0.0;
static double orig_time = 0.0;
static double count = 0.0;
new_time += timer.delta_u(t1,t2);
orig_time += timer.delta_u(t2,t3);
++count;
std::cout<<"Average new="<<new_time/count<<" orig = "<<orig_time/count<<std::endl;
std::cout<<"new matrix invert time="<<timer.delta_u(t1,t2)<<" "<<a<<std::endl;
std::cout<<"orig matrix invert time="<<timer.delta_u(t2,t3)<<" "<<b<<std::endl;
set(b);
return true;
#endif
}
/******************************************
Matrix inversion technique:
Given a matrix mat, we want to invert it.
mat = [ r00 r01 r02 a
r10 r11 r12 b
r20 r21 r22 c
tx ty tz d ]
We note that this matrix can be split into three matrices.
mat = rot * trans * corr, where rot is rotation part, trans is translation part, and corr is the correction due to perspective (if any).
rot = [ r00 r01 r02 0
r10 r11 r12 0
r20 r21 r22 0
0 0 0 1 ]
trans = [ 1 0 0 0
0 1 0 0
0 0 1 0
tx ty tz 1 ]
corr = [ 1 0 0 px
0 1 0 py
0 0 1 pz
0 0 0 s ]
where the elements of corr are obtained from linear combinations of the elements of rot, trans, and mat.
So the inverse is mat' = (trans * corr)' * rot', where rot' must be computed the traditional way, which is easy since it is only a 3x3 matrix.
This problem is simplified if [px py pz s] = [0 0 0 1], which will happen if mat was composed only of rotations, scales, and translations (which is common). In this case, we can ignore corr entirely which saves on a lot of computations.
******************************************/
bool Matrix_implementation::invert_4x4_new( const Matrix_implementation& mat )
{
if (&mat==this)
{
Matrix_implementation tm(mat);
return invert_4x4_new(tm);
}
register value_type r00, r01, r02,
r10, r11, r12,
r20, r21, r22;
// Copy rotation components directly into registers for speed
r00 = mat._mat[0][0]; r01 = mat._mat[0][1]; r02 = mat._mat[0][2];
r10 = mat._mat[1][0]; r11 = mat._mat[1][1]; r12 = mat._mat[1][2];
r20 = mat._mat[2][0]; r21 = mat._mat[2][1]; r22 = mat._mat[2][2];
// Partially compute inverse of rot
_mat[0][0] = r11*r22 - r12*r21;
_mat[0][1] = r02*r21 - r01*r22;
_mat[0][2] = r01*r12 - r02*r11;
// Compute determinant of rot from 3 elements just computed
register value_type one_over_det = 1.0/(r00*_mat[0][0] + r10*_mat[0][1] + r20*_mat[0][2]);
r00 *= one_over_det; r10 *= one_over_det; r20 *= one_over_det; // Saves on later computations
// Finish computing inverse of rot
_mat[0][0] *= one_over_det;
_mat[0][1] *= one_over_det;
_mat[0][2] *= one_over_det;
_mat[0][3] = 0.0;
_mat[1][0] = r12*r20 - r10*r22; // Have already been divided by det
_mat[1][1] = r00*r22 - r02*r20; // same
_mat[1][2] = r02*r10 - r00*r12; // same
_mat[1][3] = 0.0;
_mat[2][0] = r10*r21 - r11*r20; // Have already been divided by det
_mat[2][1] = r01*r20 - r00*r21; // same
_mat[2][2] = r00*r11 - r01*r10; // same
_mat[2][3] = 0.0;
_mat[3][3] = 1.0;
// We no longer need the rxx or det variables anymore, so we can reuse them for whatever we want. But we will still rename them for the sake of clarity.
#define d r22
d = mat._mat[3][3];
if( osg::square(d-1.0) > 1.0e-6 ) // Involves perspective, so we must
{ // compute the full inverse
Matrix_implementation TPinv;
_mat[3][0] = _mat[3][1] = _mat[3][2] = 0.0;
#define px r00
#define py r01
#define pz r02
#define one_over_s one_over_det
#define a r10
#define b r11
#define c r12
a = mat._mat[0][3]; b = mat._mat[1][3]; c = mat._mat[2][3];
px = _mat[0][0]*a + _mat[0][1]*b + _mat[0][2]*c;
py = _mat[1][0]*a + _mat[1][1]*b + _mat[1][2]*c;
pz = _mat[2][0]*a + _mat[2][1]*b + _mat[2][2]*c;
#undef a
#undef b
#undef c
#define tx r10
#define ty r11
#define tz r12
tx = mat._mat[3][0]; ty = mat._mat[3][1]; tz = mat._mat[3][2];
one_over_s = 1.0/(d - (tx*px + ty*py + tz*pz));
tx *= one_over_s; ty *= one_over_s; tz *= one_over_s; // Reduces number of calculations later on
// Compute inverse of trans*corr
TPinv._mat[0][0] = tx*px + 1.0;
TPinv._mat[0][1] = ty*px;
TPinv._mat[0][2] = tz*px;
TPinv._mat[0][3] = -px * one_over_s;
TPinv._mat[1][0] = tx*py;
TPinv._mat[1][1] = ty*py + 1.0;
TPinv._mat[1][2] = tz*py;
TPinv._mat[1][3] = -py * one_over_s;
TPinv._mat[2][0] = tx*pz;
TPinv._mat[2][1] = ty*pz;
TPinv._mat[2][2] = tz*pz + 1.0;
TPinv._mat[2][3] = -pz * one_over_s;
TPinv._mat[3][0] = -tx;
TPinv._mat[3][1] = -ty;
TPinv._mat[3][2] = -tz;
TPinv._mat[3][3] = one_over_s;
preMult(TPinv); // Finish computing full inverse of mat
#undef px
#undef py
#undef pz
#undef one_over_s
#undef d
}
else // Rightmost column is [0; 0; 0; 1] so it can be ignored
{
tx = mat._mat[3][0]; ty = mat._mat[3][1]; tz = mat._mat[3][2];
// Compute translation components of mat'
_mat[3][0] = -(tx*_mat[0][0] + ty*_mat[1][0] + tz*_mat[2][0]);
_mat[3][1] = -(tx*_mat[0][1] + ty*_mat[1][1] + tz*_mat[2][1]);
_mat[3][2] = -(tx*_mat[0][2] + ty*_mat[1][2] + tz*_mat[2][2]);
#undef tx
#undef ty
#undef tz
}
return true;
}
template <class T>
inline T SGL_ABS(T a)
{
return (a >= 0 ? a : -a);
}
#ifndef SGL_SWAP
#define SGL_SWAP(a,b,temp) ((temp)=(a),(a)=(b),(b)=(temp))
#endif
bool Matrix_implementation::invert_4x4_orig( const Matrix_implementation& mat )
{
if (&mat==this) {
Matrix_implementation tm(mat);
return invert_4x4_orig(tm);
}
unsigned int indxc[4], indxr[4], ipiv[4];
unsigned int i,j,k,l,ll;
unsigned int icol = 0;
unsigned int irow = 0;
double temp, pivinv, dum, big;
// copy in place this may be unnecessary
*this = mat;
for (j=0; j<4; j++) ipiv[j]=0;
for(i=0;i<4;i++)
{
big=0.0;
for (j=0; j<4; j++)
if (ipiv[j] != 1)
for (k=0; k<4; k++)
{
if (ipiv[k] == 0)
{
if (SGL_ABS(operator()(j,k)) >= big)
{
big = SGL_ABS(operator()(j,k));
irow=j;
icol=k;
}
}
else if (ipiv[k] > 1)
return false;
}
++(ipiv[icol]);
if (irow != icol)
for (l=0; l<4; l++) SGL_SWAP(operator()(irow,l),
operator()(icol,l),
temp);
indxr[i]=irow;
indxc[i]=icol;
if (operator()(icol,icol) == 0)
return false;
pivinv = 1.0/operator()(icol,icol);
operator()(icol,icol) = 1;
for (l=0; l<4; l++) operator()(icol,l) *= pivinv;
for (ll=0; ll<4; ll++)
if (ll != icol)
{
dum=operator()(ll,icol);
operator()(ll,icol) = 0;
for (l=0; l<4; l++) operator()(ll,l) -= operator()(icol,l)*dum;
}
}
for (int lx=4; lx>0; --lx)
{
if (indxr[lx-1] != indxc[lx-1])
for (k=0; k<4; k++) SGL_SWAP(operator()(k,indxr[lx-1]),
operator()(k,indxc[lx-1]),temp);
}
return true;
}
void Matrix_implementation::makeOrtho(double left, double right,
double bottom, double top,
double zNear, double zFar)
{
// note transpose of Matrix_implementation wr.t OpenGL documentation, since the OSG use post multiplication rather than pre.
double tx = -(right+left)/(right-left);
double ty = -(top+bottom)/(top-bottom);
double tz = -(zFar+zNear)/(zFar-zNear);
SET_ROW(0, 2.0/(right-left), 0.0, 0.0, 0.0 )
SET_ROW(1, 0.0, 2.0/(top-bottom), 0.0, 0.0 )
SET_ROW(2, 0.0, 0.0, -2.0/(zFar-zNear), 0.0 )
SET_ROW(3, tx, ty, tz, 1.0 )
}
bool Matrix_implementation::getOrtho(double& left, double& right,
double& bottom, double& top,
double& zNear, double& zFar) const
{
if (_mat[0][3]!=0.0 || _mat[1][3]!=0.0 || _mat[2][3]!=0.0 || _mat[3][3]!=1.0) return false;
zNear = (_mat[3][2]+1.0) / _mat[2][2];
zFar = (_mat[3][2]-1.0) / _mat[2][2];
left = -(1.0+_mat[3][0]) / _mat[0][0];
right = (1.0-_mat[3][0]) / _mat[0][0];
bottom = -(1.0+_mat[3][1]) / _mat[1][1];
top = (1.0-_mat[3][1]) / _mat[1][1];
return true;
}
void Matrix_implementation::makeFrustum(double left, double right,
double bottom, double top,
double zNear, double zFar)
{
// note transpose of Matrix_implementation wr.t OpenGL documentation, since the OSG use post multiplication rather than pre.
double A = (right+left)/(right-left);
double B = (top+bottom)/(top-bottom);
double C = -(zFar+zNear)/(zFar-zNear);
double D = -2.0*zFar*zNear/(zFar-zNear);
SET_ROW(0, 2.0*zNear/(right-left), 0.0, 0.0, 0.0 )
SET_ROW(1, 0.0, 2.0*zNear/(top-bottom), 0.0, 0.0 )
SET_ROW(2, A, B, C, -1.0 )
SET_ROW(3, 0.0, 0.0, D, 0.0 )
}
bool Matrix_implementation::getFrustum(double& left, double& right,
double& bottom, double& top,
double& zNear, double& zFar) const
{
if (_mat[0][3]!=0.0 || _mat[1][3]!=0.0 || _mat[2][3]!=-1.0 || _mat[3][3]!=0.0) return false;
zNear = _mat[3][2] / (_mat[2][2]-1.0);
zFar = _mat[3][2] / (1.0+_mat[2][2]);
left = zNear * (_mat[2][0]-1.0) / _mat[0][0];
right = zNear * (1.0+_mat[2][0]) / _mat[0][0];
top = zNear * (1.0+_mat[2][1]) / _mat[1][1];
bottom = zNear * (_mat[2][1]-1.0) / _mat[1][1];
return true;
}
void Matrix_implementation::makePerspective(double fovy,double aspectRatio,
double zNear, double zFar)
{
// calculate the appropriate left, right etc.
double tan_fovy = tan(DegreesToRadians(fovy*0.5));
double right = tan_fovy * aspectRatio * zNear;
double left = -right;
double top = tan_fovy * zNear;
double bottom = -top;
makeFrustum(left,right,bottom,top,zNear,zFar);
}
bool Matrix_implementation::getPerspective(double& fovy,double& aspectRatio,
double& zNear, double& zFar) const
{
double right = 0.0;
double left = 0.0;
double top = 0.0;
double bottom = 0.0;
if (getFrustum(left,right,bottom,top,zNear,zFar))
{
fovy = RadiansToDegrees(atan(top/zNear)-atan(bottom/zNear));
aspectRatio = (right-left)/(top-bottom);
return true;
}
return false;
}
void Matrix_implementation::makeLookAt(const Vec3d& eye,const Vec3d& center,const Vec3d& up)
{
Vec3d f(center-eye);
f.normalize();
Vec3d s(f^up);
s.normalize();
Vec3d u(s^f);
u.normalize();
set(
s[0], u[0], -f[0], 0.0,
s[1], u[1], -f[1], 0.0,
s[2], u[2], -f[2], 0.0,
0.0, 0.0, 0.0, 1.0);
preMult(Matrix_implementation::translate(-eye));
}
void Matrix_implementation::getLookAt(Vec3f& eye,Vec3f& center,Vec3f& up,value_type lookDistance) const
{
Matrix_implementation inv;
inv.invert(*this);
eye = osg::Vec3f(0.0,0.0,0.0)*inv;
up = transform3x3(*this,osg::Vec3f(0.0,1.0,0.0));
center = transform3x3(*this,osg::Vec3f(0.0,0.0,-1));
center.normalize();
center = eye + center*lookDistance;
}
void Matrix_implementation::getLookAt(Vec3d& eye,Vec3d& center,Vec3d& up,value_type lookDistance) const
{
Matrix_implementation inv;
inv.invert(*this);
eye = osg::Vec3d(0.0,0.0,0.0)*inv;
up = transform3x3(*this,osg::Vec3d(0.0,1.0,0.0));
center = transform3x3(*this,osg::Vec3d(0.0,0.0,-1));
center.normalize();
center = eye + center*lookDistance;
}
#undef SET_ROW