OpenSceneGraph/src/osg/Quat.cpp

345 lines
9.6 KiB
C++

#include <stdio.h>
#include <osg/Quat>
#include <osg/Vec4>
#include <osg/Vec3>
#include <osg/Types>
#include <math.h>
/// Good introductions to Quaternions at:
/// http://www.gamasutra.com/features/programming/19980703/quaternions_01.htm
/// http://mathworld.wolfram.com/Quaternion.html
using namespace osg;
/// Set the elements of the Quat to represent a rotation of angle
/// (radians) around the axis (x,y,z)
void Quat::makeRotate( const float angle,
const float x,
const float y,
const float z )
{
float inversenorm = 1.0/sqrt( x*x + y*y + z*z );
float coshalfangle = cos( 0.5*angle );
float sinhalfangle = sin( 0.5*angle );
_fv[0] = x * sinhalfangle * inversenorm;
_fv[1] = y * sinhalfangle * inversenorm;
_fv[2] = z * sinhalfangle * inversenorm;
_fv[3] = coshalfangle;
}
void Quat::makeRotate( const float angle, const Vec3& vec )
{
makeRotate( angle, vec[0], vec[1], vec[2] );
}
// assume Z up, Y north, X east and euler convention
// as per Open Flight & Performer.
// applies a positive rotation about Y axis for roll,
// then applies a positive roation about X for pitch,
// and finally a negative rotation about the Z axis.
void Quat::makeRotate( float heading, float pitch, float roll)
{
Quat q_roll; q_roll.makeRotate(roll,0.0,1.0,0.0);
Quat q_pitch; q_pitch.makeRotate(pitch,1.0,0.0,0.0);
Quat q_heading; q_heading.makeRotate(-heading,0.0,0.0,1.0);
// note reverse order than would be done using matrices
// which raises the interesting question whether the definition
// of Quat*Quat should be changed to fit with the v' = v x M
// convention of Matrix. Will investigate further later on.
// Robert Osfield. April 2002.
*this = q_heading*q_pitch*q_roll;
}
// Make a rotation Quat which will rotate vec1 to vec2
// Generally take adot product to get the angle between these
// and then use a cross product to get the rotation axis
// Watch out for the two special cases of when the vectors
// are co-incident or opposite in direction.
void Quat::makeRotate( const Vec3& from, const Vec3& to )
{
const float epsilon = 0.00001f;
float length1 = from.length();
float length2 = to.length();
// dot product vec1*vec2
float cosangle = from*to/(length1*length2);
if ( fabs(cosangle - 1) < epsilon )
{
// cosangle is close to 1, so the vectors are close to being coincident
// Need to generate an angle of zero with any vector we like
// We'll choose (1,0,0)
makeRotate( 0.0, 1.0, 0.0, 0.0 );
}
else
if ( fabs(cosangle + 1.0) < epsilon )
{
// vectors are close to being opposite, so will need to find a
// vector orthongonal to from to rotate about.
osg::Vec3 tmp;
if (fabs(from.x())<fabs(from.y()))
if (fabs(from.x())<fabs(from.z())) tmp.set(1.0,0.0,0.0); // use x axis.
else tmp.set(0.0,0.0,1.0);
else if (fabs(from.y())<fabs(from.z())) tmp.set(0.0,1.0,0.0);
else tmp.set(0.0,0.0,1.0);
// find orthogonal axis.
Vec3 axis(from^tmp);
axis.normalize();
_fv[0] = axis[0]; // sin of half angle of PI is 1.0.
_fv[1] = axis[1]; // sin of half angle of PI is 1.0.
_fv[2] = axis[2]; // sin of half angle of PI is 1.0.
_fv[3] = 0; // cos of half angle of PI is zero.
}
else
{
// This is the usual situation - take a cross-product of vec1 and vec2
// and that is the axis around which to rotate.
Vec3 axis(from^to);
float angle = acos( cosangle );
makeRotate( angle, axis );
}
}
// Get the angle of rotation and axis of this Quat object.
// Won't give very meaningful results if the Quat is not associated
// with a rotation!
void Quat::getRotate( float& angle, Vec3& vec ) const
{
float sinhalfangle = sqrt( _fv[0]*_fv[0] + _fv[1]*_fv[1] + _fv[2]*_fv[2] );
/// float coshalfangle = _fv[3];
/// These are not checked for performance reasons ? (cop out!)
/// Point for discussion - how do one handle errors in the osg?
/// if ( abs(sinhalfangle) > 1.0 ) { error };
/// if ( abs(coshalfangle) > 1.0 ) { error };
// *angle = atan2( sinhalfangle, coshalfangle ); // see man atan2
// -pi < angle < pi
angle = 2 * atan2( sinhalfangle, _fv[3] );
vec = Vec3(_fv[0], _fv[1], _fv[2]) / sinhalfangle;
}
void Quat::getRotate( float& angle, float& x, float& y, float& z ) const
{
float sinhalfangle = sqrt( _fv[0]*_fv[0] + _fv[1]*_fv[1] + _fv[2]*_fv[2] );
angle = 2 * atan2( sinhalfangle, _fv[3] );
x = _fv[0] / sinhalfangle;
y = _fv[1] / sinhalfangle;
z = _fv[2] / sinhalfangle;
}
/// Spherical Linear Interpolation
/// As t goes from 0 to 1, the Quat object goes from "from" to "to"
/// Reference: Shoemake at SIGGRAPH 89
/// See also
/// http://www.gamasutra.com/features/programming/19980703/quaternions_01.htm
void Quat::slerp( const float t, const Quat& from, const Quat& to )
{
const double epsilon = 0.00001;
double omega, cosomega, sinomega, scale_from, scale_to ;
osg::Quat quatTo(to);
// this is a dot product
cosomega = from.asVec4() * to.asVec4();
if ( cosomega <0.0 )
{
cosomega = -cosomega;
quatTo.set(-to._fv);
}
if( (1.0 - cosomega) > epsilon )
{
omega= acos(cosomega) ; // 0 <= omega <= Pi (see man acos)
sinomega = sin(omega) ; // this sinomega should always be +ve so
// could try sinomega=sqrt(1-cosomega*cosomega) to avoid a sin()?
scale_from = sin((1.0-t)*omega)/sinomega ;
scale_to = sin(t*omega)/sinomega ;
}
else
{
/* --------------------------------------------------
The ends of the vectors are very close
we can use simple linear interpolation - no need
to worry about the "spherical" interpolation
-------------------------------------------------- */
scale_from = 1.0 - t ;
scale_to = t ;
}
// use Vec4 arithmetic
_fv = (from._fv*scale_from) + (quatTo._fv*scale_to);
// so that we get a Vec4
}
#define QX _fv[0]
#define QY _fv[1]
#define QZ _fv[2]
#define QW _fv[3]
void Quat::set( const Matrix& m )
{
// Source: Gamasutra, Rotating Objects Using Quaternions
//
//http://www.gamasutra.com/features/programming/19980703/quaternions_01.htm
float tr, s;
float tq[4];
int i, j, k;
int nxt[3] = {1, 2, 0};
tr = m(0,0) + m(1,1) + m(2,2);
// check the diagonal
if (tr > 0.0)
{
s = (float)sqrt (tr + 1.0);
QW = s / 2.0f;
s = 0.5f / s;
QX = (m(1,2) - m(2,1)) * s;
QY = (m(2,0) - m(0,2)) * s;
QZ = (m(0,1) - m(1,0)) * s;
}
else
{
// diagonal is negative
i = 0;
if (m(1,1) > m(0,0))
i = 1;
if (m(2,2) > m(i,i))
i = 2;
j = nxt[i];
k = nxt[j];
s = (float)sqrt ((m(i,i) - (m(j,j) + m(k,k))) + 1.0);
tq[i] = s * 0.5f;
if (s != 0.0f)
s = 0.5f / s;
tq[3] = (m(j,k) - m(k,j)) * s;
tq[j] = (m(i,j) + m(j,i)) * s;
tq[k] = (m(i,k) + m(k,i)) * s;
QX = tq[0];
QY = tq[1];
QZ = tq[2];
QW = tq[3];
}
}
void Quat::get( Matrix& m ) const
{
// Source: Gamasutra, Rotating Objects Using Quaternions
//
//http://www.gamasutra.com/features/programming/19980703/quaternions_01.htm
double wx, wy, wz, xx, yy, yz, xy, xz, zz, x2, y2, z2;
// calculate coefficients
x2 = QX + QX;
y2 = QY + QY;
z2 = QZ + QZ;
xx = QX * x2;
xy = QX * y2;
xz = QX * z2;
yy = QY * y2;
yz = QY * z2;
zz = QZ * z2;
wx = QW * x2;
wy = QW * y2;
wz = QW * z2;
// Note. Gamasutra gets the matrix assignments inverted, resulting
// in left-handed rotations, which is contrary to OpenGL and OSG's
// methodology. The matrix assignment has been altered in the next
// few lines of code to do the right thing.
// Don Burns - Oct 13, 2001
m(0,0) = 1.0f - (yy + zz);
m(1,0) = xy - wz;
m(2,0) = xz + wy;
m(3,0) = 0.0f;
m(0,1) = xy + wz;
m(1,1) = 1.0f - (xx + zz);
m(2,1) = yz - wx;
m(3,1) = 0.0f;
m(0,2) = xz - wy;
m(1,2) = yz + wx;
m(2,2) = 1.0f - (xx + yy);
m(3,2) = 0.0f;
m(0,3) = 0;
m(1,3) = 0;
m(2,3) = 0;
m(3,3) = 1;
}
#ifdef OSG_USE_UNIT_TESTS
void test_Quat_Eueler(float heading,float pitch,float roll)
{
osg::Quat q;
q.makeRotate(heading,pitch,roll);
osg::Matrix q_m;
q.get(q_m);
osg::Vec3 xAxis(1,0,0);
osg::Vec3 yAxis(0,1,0);
osg::Vec3 zAxis(0,0,1);
cout << "heading = "<<heading<<" pitch = "<<pitch<<" roll = "<<roll<<endl;
cout <<"q_m = "<<q_m;
cout <<"xAxis*q_m = "<<xAxis*q_m << endl;
cout <<"yAxis*q_m = "<<yAxis*q_m << endl;
cout <<"zAxis*q_m = "<<zAxis*q_m << endl;
osg::Matrix r_m = osg::Matrix::rotate(roll,0.0,1.0,0.0)*
osg::Matrix::rotate(pitch,1.0,0.0,0.0)*
osg::Matrix::rotate(-heading,0.0,0.0,1.0);
cout << "r_m = "<<r_m;
cout <<"xAxis*r_m = "<<xAxis*r_m << endl;
cout <<"yAxis*r_m = "<<yAxis*r_m << endl;
cout <<"zAxis*r_m = "<<zAxis*r_m << endl;
cout << endl<<"*****************************************" << endl<< endl;
}
void test_Quat()
{
test_Quat_Eueler(osg::DegreesToRadians(20),0,0);
test_Quat_Eueler(0,osg::DegreesToRadians(20),0);
test_Quat_Eueler(0,0,osg::DegreesToRadians(20));
test_Quat_Eueler(osg::DegreesToRadians(20),osg::DegreesToRadians(20),osg::DegreesToRadians(20));
return 0;
}
#endif