OpenSceneGraph/examples/osgvertexprogram/osgvertexprogram.cpp
2005-04-22 20:56:03 +00:00

443 lines
18 KiB
C++

#include <osg/Vec3>
#include <osg/Vec4>
#include <osg/Quat>
#include <osg/Matrix>
#include <osg/ShapeDrawable>
#include <osg/Geometry>
#include <osg/Geode>
#include <osg/Transform>
#include <osg/Material>
#include <osg/NodeCallback>
#include <osg/Depth>
#include <osg/CullFace>
#include <osg/TexMat>
#include <osg/TexGen>
#include <osg/TexEnvCombine>
#include <osg/TextureCubeMap>
#include <osg/VertexProgram>
#include <osgDB/Registry>
#include <osgDB/ReadFile>
#include <osgUtil/SmoothingVisitor>
#include <osgUtil/Optimizer>
#include <osgProducer/Viewer>
float refract = 1.02; // ratio of indicies of refraction
float fresnel = 0.2; // Fresnel multiplier
const char vpstr[] =
"!!ARBvp1.0 # Refraction \n"
" \n"
"ATTRIB iPos = vertex.position; \n"
"#ATTRIB iCol = vertex.color.primary; \n"
"ATTRIB iNormal = vertex.normal; \n"
"PARAM esEyePos = { 0, 0, 0, 1 }; \n"
"PARAM const0123 = { 0, 1, 2, 3 }; \n"
"PARAM fresnel = program.local[0]; \n"
"PARAM refract = program.local[1]; \n"
"PARAM itMV[4] = { state.matrix.modelview.invtrans }; \n"
"PARAM MVP[4] = { state.matrix.mvp }; \n"
"PARAM MV[4] = { state.matrix.modelview }; \n"
"PARAM texmat[4] = { state.matrix.texture[0] }; \n"
"TEMP esPos; # position in eye-space \n"
"TEMP esNormal; # normal in eye-space \n"
"TEMP tmp, IdotN, K; \n"
"TEMP esE; # eye vector \n"
"TEMP esI; # incident vector (=-E) \n"
"TEMP esR; # first refract- then reflect-vector \n"
"OUTPUT oPos = result.position; \n"
"OUTPUT oColor = result.color; \n"
"OUTPUT oRefractMap = result.texcoord[0]; \n"
"OUTPUT oReflectMap = result.texcoord[1]; \n"
" \n"
"# transform vertex to clip space \n"
"DP4 oPos.x, MVP[0], iPos; \n"
"DP4 oPos.y, MVP[1], iPos; \n"
"DP4 oPos.z, MVP[2], iPos; \n"
"DP4 oPos.w, MVP[3], iPos; \n"
" \n"
"# Transform the normal to eye space. \n"
"DP3 esNormal.x, itMV[0], iNormal; \n"
"DP3 esNormal.y, itMV[1], iNormal; \n"
"DP3 esNormal.z, itMV[2], iNormal; \n"
" \n"
"# normalize normal \n"
"DP3 esNormal.w, esNormal, esNormal; \n"
"RSQ esNormal.w, esNormal.w; \n"
"MUL esNormal, esNormal, esNormal.w; \n"
" \n"
"# transform vertex position to eye space \n"
"DP4 esPos.x, MV[0], iPos; \n"
"DP4 esPos.y, MV[1], iPos; \n"
"DP4 esPos.z, MV[2], iPos; \n"
"DP4 esPos.w, MV[3], iPos; \n"
" \n"
"# vertex to eye vector \n"
"ADD esE, -esPos, esEyePos; \n"
"#MOV esE, -esPos; \n"
" \n"
"# normalize eye vector \n"
"DP3 esE.w, esE, esE; \n"
"RSQ esE.w, esE.w; \n"
"MUL esE, esE, esE.w; \n"
" \n"
"# calculate some handy values \n"
"MOV esI, -esE; \n"
"DP3 IdotN, esNormal, esI; \n"
" \n"
"# calculate refraction vector, Renderman style \n"
" \n"
"# k = 1-index*index*(1-(I dot N)^2) \n"
"MAD tmp, -IdotN, IdotN, const0123.y; \n"
"MUL tmp, tmp, refract.y; \n"
"ADD K.x, const0123.y, -tmp; \n"
" \n"
"# k<0, R = [0,0,0] \n"
"# k>=0, R = index*I-(index*(I dot N) + sqrt(k))*N \n"
"RSQ K.y, K.x; \n"
"RCP K.y, K.y; # K.y = sqrt(k) \n"
"MAD tmp.x, refract.x, IdotN, K.y; \n"
"MUL tmp, esNormal, tmp.x; \n"
"MAD esR, refract.x, esI, tmp; \n"
" \n"
"# transform refracted ray by cubemap transform \n"
"DP3 oRefractMap.x, texmat[0], esR; \n"
"DP3 oRefractMap.y, texmat[1], esR; \n"
"DP3 oRefractMap.z, texmat[2], esR; \n"
" \n"
"# calculate reflection vector \n"
"# R = 2*N*(N dot E)-E \n"
"MUL tmp, esNormal, const0123.z; \n"
"DP3 esR.w, esNormal, esE; \n"
"MAD esR, esR.w, tmp, -esE; \n"
" \n"
"# transform reflected ray by cubemap transform \n"
"DP3 oReflectMap.x, texmat[0], esR; \n"
"DP3 oReflectMap.y, texmat[1], esR; \n"
"DP3 oReflectMap.z, texmat[2], esR; \n"
" \n"
"# Fresnel approximation = fresnel*(1-(N dot I))^2 \n"
"ADD tmp.x, const0123.y, -IdotN; \n"
"MUL tmp.x, tmp.x, tmp.x; \n"
"MUL oColor, tmp.x, fresnel; \n"
" \n"
"END \n";
osg::TextureCubeMap* readCubeMap()
{
osg::TextureCubeMap* cubemap = new osg::TextureCubeMap;
//#define CUBEMAP_FILENAME(face) "nvlobby_" #face ".png"
//#define CUBEMAP_FILENAME(face) "Cubemap_axis/" #face ".png"
#define CUBEMAP_FILENAME(face) "Cubemap_snow/" #face ".jpg"
osg::Image* imagePosX = osgDB::readImageFile(CUBEMAP_FILENAME(posx));
osg::Image* imageNegX = osgDB::readImageFile(CUBEMAP_FILENAME(negx));
osg::Image* imagePosY = osgDB::readImageFile(CUBEMAP_FILENAME(posy));
osg::Image* imageNegY = osgDB::readImageFile(CUBEMAP_FILENAME(negy));
osg::Image* imagePosZ = osgDB::readImageFile(CUBEMAP_FILENAME(posz));
osg::Image* imageNegZ = osgDB::readImageFile(CUBEMAP_FILENAME(negz));
if (imagePosX && imageNegX && imagePosY && imageNegY && imagePosZ && imageNegZ)
{
cubemap->setImage(osg::TextureCubeMap::POSITIVE_X, imagePosX);
cubemap->setImage(osg::TextureCubeMap::NEGATIVE_X, imageNegX);
cubemap->setImage(osg::TextureCubeMap::POSITIVE_Y, imagePosY);
cubemap->setImage(osg::TextureCubeMap::NEGATIVE_Y, imageNegY);
cubemap->setImage(osg::TextureCubeMap::POSITIVE_Z, imagePosZ);
cubemap->setImage(osg::TextureCubeMap::NEGATIVE_Z, imageNegZ);
cubemap->setWrap(osg::Texture::WRAP_S, osg::Texture::CLAMP_TO_EDGE);
cubemap->setWrap(osg::Texture::WRAP_T, osg::Texture::CLAMP_TO_EDGE);
cubemap->setWrap(osg::Texture::WRAP_R, osg::Texture::CLAMP_TO_EDGE);
cubemap->setFilter(osg::Texture::MIN_FILTER, osg::Texture::LINEAR_MIPMAP_LINEAR);
cubemap->setFilter(osg::Texture::MAG_FILTER, osg::Texture::LINEAR);
}
return cubemap;
}
// Update texture matrix for cubemaps
struct TexMatCallback : public osg::NodeCallback
{
public:
TexMatCallback(osg::TexMat& tm) :
_texMat(tm)
{
}
virtual void operator()(osg::Node* node, osg::NodeVisitor* nv)
{
osgUtil::CullVisitor* cv = dynamic_cast<osgUtil::CullVisitor*>(nv);
if (cv)
{
const osg::Matrix& MV = cv->getModelViewMatrix();
const osg::Matrix R = osg::Matrix::rotate( osg::DegreesToRadians(112.0f), 0.0f,0.0f,1.0f)*
osg::Matrix::rotate( osg::DegreesToRadians(90.0f), 1.0f,0.0f,0.0f);
osg::Quat q;
MV.get(q);
const osg::Matrix C = osg::Matrix::rotate( q.inverse() );
_texMat.setMatrix( C*R );
}
traverse(node,nv);
}
osg::TexMat& _texMat;
};
class MoveEarthySkyWithEyePointTransform : public osg::Transform
{
public:
/** Get the transformation matrix which moves from local coords to world coords.*/
virtual bool computeLocalToWorldMatrix(osg::Matrix& matrix,osg::NodeVisitor* nv) const
{
osgUtil::CullVisitor* cv = dynamic_cast<osgUtil::CullVisitor*>(nv);
if (cv)
{
osg::Vec3 eyePointLocal = cv->getEyeLocal();
matrix.preMult(osg::Matrix::translate(eyePointLocal));
}
return true;
}
/** Get the transformation matrix which moves from world coords to local coords.*/
virtual bool computeWorldToLocalMatrix(osg::Matrix& matrix,osg::NodeVisitor* nv) const
{
osgUtil::CullVisitor* cv = dynamic_cast<osgUtil::CullVisitor*>(nv);
if (cv)
{
osg::Vec3 eyePointLocal = cv->getEyeLocal();
matrix.postMult(osg::Matrix::translate(-eyePointLocal));
}
return true;
}
};
osg::Node* createSkyBox()
{
osg::StateSet* stateset = new osg::StateSet();
osg::TexEnv* te = new osg::TexEnv;
te->setMode(osg::TexEnv::REPLACE);
stateset->setTextureAttributeAndModes(0, te, osg::StateAttribute::ON);
osg::TexGen *tg = new osg::TexGen;
tg->setMode(osg::TexGen::NORMAL_MAP);
stateset->setTextureAttributeAndModes(0, tg, osg::StateAttribute::ON);
osg::TexMat *tm = new osg::TexMat;
stateset->setTextureAttribute(0, tm);
osg::TextureCubeMap* skymap = readCubeMap();
stateset->setTextureAttributeAndModes(0, skymap, osg::StateAttribute::ON);
stateset->setMode( GL_LIGHTING, osg::StateAttribute::OFF );
stateset->setMode( GL_CULL_FACE, osg::StateAttribute::OFF );
// clear the depth to the far plane.
osg::Depth* depth = new osg::Depth;
depth->setFunction(osg::Depth::ALWAYS);
depth->setRange(1.0,1.0);
stateset->setAttributeAndModes(depth, osg::StateAttribute::ON );
stateset->setRenderBinDetails(-1,"RenderBin");
osg::Drawable* drawable = new osg::ShapeDrawable(new osg::Sphere(osg::Vec3(0.0f,0.0f,0.0f),1));
osg::Geode* geode = new osg::Geode;
geode->setCullingActive(false);
geode->setStateSet( stateset );
geode->addDrawable(drawable);
osg::Transform* transform = new MoveEarthySkyWithEyePointTransform;
transform->setCullingActive(false);
transform->addChild(geode);
osg::ClearNode* clearNode = new osg::ClearNode;
// clearNode->setRequiresClear(false);
clearNode->setCullCallback(new TexMatCallback(*tm));
clearNode->addChild(transform);
return clearNode;
}
osg::Node* addRefractStateSet(osg::Node* node)
{
osg::StateSet* stateset = new osg::StateSet();
osg::TextureCubeMap* reflectmap = readCubeMap();
stateset->setTextureAttributeAndModes( 0, reflectmap, osg::StateAttribute::ON | osg::StateAttribute::OVERRIDE );
stateset->setTextureAttributeAndModes( 1, reflectmap, osg::StateAttribute::ON | osg::StateAttribute::OVERRIDE );
osg::TexMat* texMat = new osg::TexMat;
stateset->setTextureAttribute(0, texMat);
// ---------------------------------------------------
// Vertex Program
// ---------------------------------------------------
osg::VertexProgram* vp = new osg::VertexProgram();
vp->setVertexProgram( vpstr );
vp->setProgramLocalParameter( 0, osg::Vec4( fresnel, fresnel, fresnel, 1.0f ) );
vp->setProgramLocalParameter( 1, osg::Vec4( refract, refract*refract, 0.0f, 0.0f ) );
stateset->setAttributeAndModes( vp, osg::StateAttribute::ON | osg::StateAttribute::OVERRIDE );
// ---------------------------------------------------
// fragment = refraction*(1-fresnel) + reflection*fresnel
// T0 = texture unit 0, refraction map
// T1 = texture unit 1, reflection map
// C.rgb = primary color, water color
// C.a = primary color, fresnel factor
// Cp = result from previous texture environment
// ---------------------------------------------------
// REPLACE function: Arg0
// = T0
osg::TexEnvCombine *te0 = new osg::TexEnvCombine;
te0->setCombine_RGB(osg::TexEnvCombine::REPLACE);
te0->setSource0_RGB(osg::TexEnvCombine::TEXTURE0);
te0->setOperand0_RGB(osg::TexEnvCombine::SRC_COLOR);
// INTERPOLATE function: Arg0 * (Arg2) + Arg1 * (1-Arg2)
// = T1 * C0.a + Cp * (1-C0.a)
osg::TexEnvCombine *te1 = new osg::TexEnvCombine;
// rgb = Cp + Ct
te1->setCombine_RGB(osg::TexEnvCombine::INTERPOLATE);
te1->setSource0_RGB(osg::TexEnvCombine::TEXTURE1);
te1->setOperand0_RGB(osg::TexEnvCombine::SRC_COLOR);
te1->setSource1_RGB(osg::TexEnvCombine::PREVIOUS);
te1->setOperand1_RGB(osg::TexEnvCombine::SRC_COLOR);
te1->setSource2_RGB(osg::TexEnvCombine::PRIMARY_COLOR);
te1->setOperand2_RGB(osg::TexEnvCombine::SRC_COLOR);
stateset->setTextureAttributeAndModes(0, te0, osg::StateAttribute::ON | osg::StateAttribute::OVERRIDE);
stateset->setTextureAttributeAndModes(1, te1, osg::StateAttribute::ON | osg::StateAttribute::OVERRIDE);
osg::Group* group = new osg::Group;
group->addChild(node);
group->setCullCallback(new TexMatCallback(*texMat));
group->setStateSet( stateset );
return group;
}
int main(int argc, char *argv[])
{
// use an ArgumentParser object to manage the program arguments.
osg::ArgumentParser arguments(&argc,argv);
// set up the usage document, in case we need to print out how to use this program.
arguments.getApplicationUsage()->setDescription(arguments.getApplicationName()+" is the example which demonstrate support for ARB_vertex_program.");
arguments.getApplicationUsage()->setCommandLineUsage(arguments.getApplicationName()+" [options] filename ...");
arguments.getApplicationUsage()->addCommandLineOption("-h or --help","Display this information");
// construct the viewer.
osgProducer::Viewer viewer(arguments);
// set up the value with sensible default event handlers.
viewer.setUpViewer(osgProducer::Viewer::STANDARD_SETTINGS);
// get details on keyboard and mouse bindings used by the viewer.
viewer.getUsage(*arguments.getApplicationUsage());
// if user request help write it out to cout.
if (arguments.read("-h") || arguments.read("--help"))
{
arguments.getApplicationUsage()->write(std::cout);
return 1;
}
// any option left unread are converted into errors to write out later.
arguments.reportRemainingOptionsAsUnrecognized();
// report any errors if they have occured when parsing the program aguments.
if (arguments.errors())
{
arguments.writeErrorMessages(std::cout);
return 1;
}
osg::Group* rootnode = new osg::Group;
rootnode->addChild(createSkyBox());
// load the nodes from the commandline arguments.
osg::Node* model = osgDB::readNodeFiles(arguments);
if (!model)
{
const float radius = 1.0f;
osg::Geode* geode = new osg::Geode;
geode->addDrawable(new osg::ShapeDrawable(new osg::Sphere(osg::Vec3(0.0f,0.0f,0.0f),radius)));
model = geode;
}
// run optimization over the scene graph
osgUtil::Optimizer optimzer;
optimzer.optimize(model);
// create normals.
osgUtil::SmoothingVisitor smoother;
model->accept(smoother);
rootnode->addChild( addRefractStateSet(model) );
// add a viewport to the viewer and attach the scene graph.
viewer.setSceneData(rootnode);
// create the windows and run the threads.
viewer.realize();
// now check to see if vertex program is supported.
for(unsigned int contextID = 0;
contextID<viewer.getDisplaySettings()->getMaxNumberOfGraphicsContexts();
++contextID)
{
osg::VertexProgram::Extensions* vpExt = osg::VertexProgram::getExtensions(contextID,false);
if (vpExt)
{
if (!vpExt->isVertexProgramSupported())
{
std::cout<<"Warning: ARB_vertex_program not supported by OpenGL drivers, unable to run application."<<std::endl;
return 1;
}
}
}
while( !viewer.done() )
{
// wait for all cull and draw threads to complete.
viewer.sync();
// update the scene by traversing it with the the update visitor which will
// call all node update callbacks and animations.
viewer.update();
// fire off the cull and draw traversals of the scene.
viewer.frame();
}
// wait for all cull and draw threads to complete before exit.
viewer.sync();
return 0;
}