OpenSceneGraph/include/osg/Matrix
Robert Osfield e530912744 Made Matrix a typedef to Matrixf, and converted the old Matrix to Matrixf, as
part of prep for supporting both Matrixf (float) and Matrixd (double).

Added osg::Matrixf::glLoadMatrix() and osg::Matrixf::glMultiMatrix() methods
and changed corresponding usage of glLoad/MultMatrixf() calls across to use these
methods. Again prep for support Matrixd.

Fixes for VisualStudio 6.0 compile.
2003-09-02 17:19:18 +00:00

475 lines
16 KiB
C++

/* -*-c++-*- OpenSceneGraph - Copyright (C) 1998-2003 Robert Osfield
*
* This library is open source and may be redistributed and/or modified under
* the terms of the OpenSceneGraph Public License (OSGPL) version 0.0 or
* (at your option) any later version. The full license is in LICENSE file
* included with this distribution, and on the openscenegraph.org website.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* OpenSceneGraph Public License for more details.
*/
#ifndef OSG_MATRIX
#define OSG_MATRIX 1
#include <osg/Object>
#include <osg/Vec3>
#include <osg/Vec4>
#include <string.h>
#include <iostream>
#include <algorithm>
namespace osg {
class Quat;
class SG_EXPORT Matrixf
{
public:
Matrixf();
Matrixf( const Matrixf& other);
explicit Matrixf( float const * const def );
explicit Matrixf(double const * const ptr )
{
for(int i=0;i<16;++i)
((float*)_mat)[i] = ptr[i];
}
Matrixf( float a00, float a01, float a02, float a03,
float a10, float a11, float a12, float a13,
float a20, float a21, float a22, float a23,
float a30, float a31, float a32, float a33);
~Matrixf() {}
int compare(const Matrixf& m) const { return memcmp(_mat,m._mat,sizeof(_mat)); }
bool operator < (const Matrixf& m) const { return compare(m)<0; }
bool operator == (const Matrixf& m) const { return compare(m)==0; }
bool operator != (const Matrixf& m) const { return compare(m)!=0; }
inline float& operator()(int row, int col) { return _mat[row][col]; }
inline float operator()(int row, int col) const { return _mat[row][col]; }
inline bool valid() const { return !isNaN(); }
inline bool isNaN() const { return osg::isNaN(_mat[0][0]) || osg::isNaN(_mat[0][1]) || osg::isNaN(_mat[0][2]) || osg::isNaN(_mat[0][3]) ||
osg::isNaN(_mat[1][0]) || osg::isNaN(_mat[1][1]) || osg::isNaN(_mat[1][2]) || osg::isNaN(_mat[1][3]) ||
osg::isNaN(_mat[2][0]) || osg::isNaN(_mat[2][1]) || osg::isNaN(_mat[2][2]) || osg::isNaN(_mat[2][3]) ||
osg::isNaN(_mat[3][0]) || osg::isNaN(_mat[3][1]) || osg::isNaN(_mat[3][2]) || osg::isNaN(_mat[3][3]); }
inline Matrixf& operator = (const Matrixf& other)
{
if( &other == this ) return *this;
std::copy((float*)other._mat,(float*)other._mat+16,(float*)(_mat));
return *this;
}
inline void set(const Matrixf& other)
{
std::copy((float*)other._mat,(float*)other._mat+16,(float*)(_mat));
}
inline void set(float const * const ptr)
{
std::copy(ptr,ptr+16,(float*)(_mat));
}
void set( float a00, float a01, float a02, float a03,
float a10, float a11, float a12, float a13,
float a20, float a21, float a22, float a23,
float a30, float a31, float a32, float a33);
float * ptr() { return (float *)_mat; }
const float * ptr() const { return (const float *)_mat; }
void makeIdentity();
void makeScale( const Vec3& );
void makeScale( float, float, float );
void makeTranslate( const Vec3& );
void makeTranslate( float, float, float );
void makeRotate( const Vec3& from, const Vec3& to );
void makeRotate( float angle, const Vec3& axis );
void makeRotate( float angle, float x, float y, float z );
void makeRotate( const Quat& );
void makeRotate( float angle1, const Vec3& axis1,
float angle2, const Vec3& axis2,
float angle3, const Vec3& axis3);
/** Set to a orthographic projection. See glOrtho for further details.*/
void makeOrtho(double left, double right,
double bottom, double top,
double zNear, double zFar);
/** Get the othorgraphic settings of the orthographic projection matrix.
* Note, if matrix is not an orthographic matrix then invalid values will be returned.*/
void getOrtho(double& left, double& right,
double& bottom, double& top,
double& zNear, double& zFar);
/** Set to a 2D orthographic projection. See glOrtho2D for further details.*/
inline void makeOrtho2D(double left, double right,
double bottom, double top)
{
makeOrtho(left,right,bottom,top,-1.0,1.0);
}
/** Set to a perspective projection. See glFrustum for further details.*/
void makeFrustum(double left, double right,
double bottom, double top,
double zNear, double zFar);
/** Get the frustum setting of a perspective projection matrix.
* Note, if matrix is not an perspective matrix then invalid values will be returned.*/
void getFrustum(double& left, double& right,
double& bottom, double& top,
double& zNear, double& zFar);
/** Set to a symmetrical perspective projection, See gluPerspective for further details.
* Aspect ratio is defined as width/height.*/
void makePerspective(double fovy,double aspectRatio,
double zNear, double zFar);
/** Set to the position and orientation modelview matrix, using the same convention as gluLookAt. */
void makeLookAt(const Vec3& eye,const Vec3& center,const Vec3& up);
/** Get to the position and orientation of a modelview matrix, using the same convention as gluLookAt. */
void getLookAt(Vec3& eye,Vec3& center,Vec3& up,float lookDistance=1.0f);
bool invert( const Matrixf& );
//basic utility functions to create new matrices
inline static Matrixf identity( void );
inline static Matrixf scale( const Vec3& sv);
inline static Matrixf scale( float sx, float sy, float sz);
inline static Matrixf translate( const Vec3& dv);
inline static Matrixf translate( float x, float y, float z);
inline static Matrixf rotate( const Vec3& from, const Vec3& to);
inline static Matrixf rotate( float angle, float x, float y, float z);
inline static Matrixf rotate( float angle, const Vec3& axis);
inline static Matrixf rotate( float angle1, const Vec3& axis1,
float angle2, const Vec3& axis2,
float angle3, const Vec3& axis3);
inline static Matrixf rotate( const Quat& quat);
inline static Matrixf inverse( const Matrixf& matrix);
/** Create a orthographic projection. See glOrtho for further details.*/
inline static Matrixf ortho(double left, double right,
double bottom, double top,
double zNear, double zFar);
/** Create a 2D orthographic projection. See glOrtho for further details.*/
inline static Matrixf ortho2D(double left, double right,
double bottom, double top);
/** Create a perspective projection. See glFrustum for further details.*/
inline static Matrixf frustum(double left, double right,
double bottom, double top,
double zNear, double zFar);
/** Create a symmetrical perspective projection, See gluPerspective for further details.
* Aspect ratio is defined as width/height.*/
inline static Matrixf perspective(double fovy,double aspectRatio,
double zNear, double zFar);
/** Create the position and orientation as per a camera, using the same convention as gluLookAt. */
inline static Matrixf lookAt(const Vec3& eye,const Vec3& center,const Vec3& up);
inline Vec3 preMult( const Vec3& v ) const;
inline Vec3 postMult( const Vec3& v ) const;
inline Vec3 operator* ( const Vec3& v ) const;
inline Vec4 preMult( const Vec4& v ) const;
inline Vec4 postMult( const Vec4& v ) const;
inline Vec4 operator* ( const Vec4& v ) const;
void setTrans( float tx, float ty, float tz );
void setTrans( const Vec3& v );
inline Vec3 getTrans() const { return Vec3(_mat[3][0],_mat[3][1],_mat[3][2]); }
inline Vec3 getScale() const { return Vec3(_mat[0][0],_mat[1][1],_mat[2][2]); }
/** apply apply an 3x3 transform of v*M[0..2,0..2] */
inline static Vec3 transform3x3(const Vec3& v,const Matrixf& m);
/** apply apply an 3x3 transform of M[0..2,0..2]*v */
inline static Vec3 transform3x3(const Matrixf& m,const Vec3& v);
// basic Matrix multiplication, our workhorse methods.
void mult( const Matrixf&, const Matrixf& );
void preMult( const Matrixf& );
void postMult( const Matrixf& );
inline void operator *= ( const Matrixf& other )
{ if( this == &other ) {
Matrixf temp(other);
postMult( temp );
}
else postMult( other );
}
inline Matrixf operator * ( const Matrixf &m ) const
{
osg::Matrixf r;
r.mult(*this,m);
return r;
}
/** call glLoadMatixf with this matrix.*/
void glLoadMatrix() const;
/** call glMultMatixf with this matrix.*/
void glMultMatrix() const;
protected:
float _mat[4][4];
};
typedef Matrixf Matrix;
class RefMatrix : public Object, public Matrix
{
public:
RefMatrix():Matrix() {}
RefMatrix( const Matrix& other) : Matrix(other) {}
RefMatrix( const RefMatrix& other) : Object(other), Matrix(other) {}
explicit RefMatrix( float const * const def ):Matrix(def) {}
RefMatrix( float a00, float a01, float a02, float a03,
float a10, float a11, float a12, float a13,
float a20, float a21, float a22, float a23,
float a30, float a31, float a32, float a33):
Matrix(a00, a01, a02, a03,
a10, a11, a12, a13,
a20, a21, a22, a23,
a30, a31, a32, a33) {}
virtual Object* cloneType() const { return new RefMatrix(); }
virtual Object* clone(const CopyOp&) const { return new RefMatrix(*this); }
virtual bool isSameKindAs(const Object* obj) const { return dynamic_cast<const RefMatrix*>(obj)!=NULL; }
virtual const char* libraryName() const { return "osg"; }
virtual const char* className() const { return "Matrix"; }
protected:
virtual ~RefMatrix() {}
};
//static utility methods
inline Matrix Matrix::identity(void)
{
Matrix m;
m.makeIdentity();
return m;
}
inline Matrix Matrix::scale(float sx, float sy, float sz)
{
Matrix m;
m.makeScale(sx,sy,sz);
return m;
}
inline Matrix Matrix::scale(const Vec3& v )
{
return scale(v.x(), v.y(), v.z() );
}
inline Matrix Matrix::translate(float tx, float ty, float tz)
{
Matrix m;
m.makeTranslate(tx,ty,tz);
return m;
}
inline Matrix Matrix::translate(const Vec3& v )
{
return translate(v.x(), v.y(), v.z() );
}
inline Matrix Matrix::rotate( const Quat& q )
{
Matrix m;
m.makeRotate( q );
return m;
}
inline Matrix Matrix::rotate(float angle, float x, float y, float z )
{
Matrix m;
m.makeRotate(angle,x,y,z);
return m;
}
inline Matrix Matrix::rotate(float angle, const Vec3& axis )
{
Matrix m;
m.makeRotate(angle,axis);
return m;
}
inline Matrix Matrix::rotate( float angle1, const Vec3& axis1,
float angle2, const Vec3& axis2,
float angle3, const Vec3& axis3)
{
Matrix m;
m.makeRotate(angle1,axis1,angle2,axis2,angle3,axis3);
return m;
}
inline Matrix Matrix::rotate(const Vec3& from, const Vec3& to )
{
Matrix m;
m.makeRotate(from,to);
return m;
}
inline Matrix Matrix::inverse( const Matrix& matrix)
{
Matrix m;
m.invert(matrix);
return m;
}
inline Matrix Matrix::ortho(double left, double right,
double bottom, double top,
double zNear, double zFar)
{
Matrix m;
m.makeOrtho(left,right,bottom,top,zNear,zFar);
return m;
}
inline Matrix Matrix::ortho2D(double left, double right,
double bottom, double top)
{
Matrix m;
m.makeOrtho2D(left,right,bottom,top);
return m;
}
inline Matrix Matrix::frustum(double left, double right,
double bottom, double top,
double zNear, double zFar)
{
Matrix m;
m.makeFrustum(left,right,bottom,top,zNear,zFar);
return m;
}
inline Matrix Matrix::perspective(double fovy,double aspectRatio,
double zNear, double zFar)
{
Matrix m;
m.makePerspective(fovy,aspectRatio,zNear,zFar);
return m;
}
inline Matrix Matrix::lookAt(const Vec3& eye,const Vec3& center,const Vec3& up)
{
Matrix m;
m.makeLookAt(eye,center,up);
return m;
}
inline Vec3 Matrix::postMult( const Vec3& v ) const
{
float d = 1.0f/(_mat[3][0]*v.x()+_mat[3][1]*v.y()+_mat[3][2]*v.z()+_mat[3][3]) ;
return Vec3( (_mat[0][0]*v.x() + _mat[0][1]*v.y() + _mat[0][2]*v.z() + _mat[0][3])*d,
(_mat[1][0]*v.x() + _mat[1][1]*v.y() + _mat[1][2]*v.z() + _mat[1][3])*d,
(_mat[2][0]*v.x() + _mat[2][1]*v.y() + _mat[2][2]*v.z() + _mat[2][3])*d) ;
}
inline Vec3 Matrix::preMult( const Vec3& v ) const
{
float d = 1.0f/(_mat[0][3]*v.x()+_mat[1][3]*v.y()+_mat[2][3]*v.z()+_mat[3][3]) ;
return Vec3( (_mat[0][0]*v.x() + _mat[1][0]*v.y() + _mat[2][0]*v.z() + _mat[3][0])*d,
(_mat[0][1]*v.x() + _mat[1][1]*v.y() + _mat[2][1]*v.z() + _mat[3][1])*d,
(_mat[0][2]*v.x() + _mat[1][2]*v.y() + _mat[2][2]*v.z() + _mat[3][2])*d);
}
inline Vec4 Matrix::postMult( const Vec4& v ) const
{
return Vec4( (_mat[0][0]*v.x() + _mat[0][1]*v.y() + _mat[0][2]*v.z() + _mat[0][3]*v.w()),
(_mat[1][0]*v.x() + _mat[1][1]*v.y() + _mat[1][2]*v.z() + _mat[1][3]*v.w()),
(_mat[2][0]*v.x() + _mat[2][1]*v.y() + _mat[2][2]*v.z() + _mat[2][3]*v.w()),
(_mat[3][0]*v.x() + _mat[3][1]*v.y() + _mat[3][2]*v.z() + _mat[3][3]*v.w())) ;
}
inline Vec4 Matrix::preMult( const Vec4& v ) const
{
return Vec4( (_mat[0][0]*v.x() + _mat[1][0]*v.y() + _mat[2][0]*v.z() + _mat[3][0]*v.w()),
(_mat[0][1]*v.x() + _mat[1][1]*v.y() + _mat[2][1]*v.z() + _mat[3][1]*v.w()),
(_mat[0][2]*v.x() + _mat[1][2]*v.y() + _mat[2][2]*v.z() + _mat[3][2]*v.w()),
(_mat[0][3]*v.x() + _mat[1][3]*v.y() + _mat[2][3]*v.z() + _mat[3][3]*v.w()));
}
inline Vec3 Matrix::transform3x3(const Vec3& v,const Matrix& m)
{
return Vec3( (m._mat[0][0]*v.x() + m._mat[1][0]*v.y() + m._mat[2][0]*v.z()),
(m._mat[0][1]*v.x() + m._mat[1][1]*v.y() + m._mat[2][1]*v.z()),
(m._mat[0][2]*v.x() + m._mat[1][2]*v.y() + m._mat[2][2]*v.z()));
}
inline Vec3 Matrix::transform3x3(const Matrix& m,const Vec3& v)
{
return Vec3( (m._mat[0][0]*v.x() + m._mat[0][1]*v.y() + m._mat[0][2]*v.z()),
(m._mat[1][0]*v.x() + m._mat[1][1]*v.y() + m._mat[1][2]*v.z()),
(m._mat[2][0]*v.x() + m._mat[2][1]*v.y() + m._mat[2][2]*v.z()) ) ;
}
inline Vec3 operator* (const Vec3& v, const Matrix& m )
{
return m.preMult(v);
}
inline Vec4 operator* (const Vec4& v, const Matrix& m )
{
return m.preMult(v);
}
inline Vec3 Matrix::operator* (const Vec3& v) const
{
return postMult(v);
}
inline Vec4 Matrix::operator* (const Vec4& v) const
{
return postMult(v);
}
inline std::ostream& operator<< (std::ostream& os, const Matrix& m )
{
os << "{"<<std::endl;
for(int row=0; row<4; ++row) {
os << "\t";
for(int col=0; col<4; ++col)
os << m(row,col) << " ";
os << std::endl;
}
os << "}" << std::endl;
return os;
}
} //namespace osg
#endif