OpenSceneGraph/src/osg/AnimationPath.cpp
2012-03-21 17:36:20 +00:00

300 lines
8.6 KiB
C++

/* -*-c++-*- OpenSceneGraph - Copyright (C) 1998-2006 Robert Osfield
*
* This library is open source and may be redistributed and/or modified under
* the terms of the OpenSceneGraph Public License (OSGPL) version 0.0 or
* (at your option) any later version. The full license is in LICENSE file
* included with this distribution, and on the openscenegraph.org website.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* OpenSceneGraph Public License for more details.
*/
#include <osg/AnimationPath>
#include <osg/MatrixTransform>
#include <osg/PositionAttitudeTransform>
#include <osg/Camera>
#include <osg/CameraView>
#include <osg/io_utils>
using namespace osg;
void AnimationPath::insert(double time,const ControlPoint& controlPoint)
{
_timeControlPointMap[time] = controlPoint;
}
bool AnimationPath::getInterpolatedControlPoint(double time,ControlPoint& controlPoint) const
{
if (_timeControlPointMap.empty()) return false;
switch(_loopMode)
{
case(SWING):
{
double modulated_time = (time - getFirstTime())/(getPeriod()*2.0);
double fraction_part = modulated_time - floor(modulated_time);
if (fraction_part>0.5) fraction_part = 1.0-fraction_part;
time = getFirstTime()+(fraction_part*2.0) * getPeriod();
break;
}
case(LOOP):
{
double modulated_time = (time - getFirstTime())/getPeriod();
double fraction_part = modulated_time - floor(modulated_time);
time = getFirstTime()+fraction_part * getPeriod();
break;
}
case(NO_LOOPING):
// no need to modulate the time.
break;
}
TimeControlPointMap::const_iterator second = _timeControlPointMap.lower_bound(time);
if (second==_timeControlPointMap.begin())
{
controlPoint = second->second;
}
else if (second!=_timeControlPointMap.end())
{
TimeControlPointMap::const_iterator first = second;
--first;
// we have both a lower bound and the next item.
// delta_time = second.time - first.time
double delta_time = second->first - first->first;
if (delta_time==0.0)
controlPoint = first->second;
else
{
controlPoint.interpolate((time - first->first)/delta_time,
first->second,
second->second);
}
}
else // (second==_timeControlPointMap.end())
{
controlPoint = _timeControlPointMap.rbegin()->second;
}
return true;
}
void AnimationPath::read(std::istream& in)
{
while (!in.eof())
{
double time;
osg::Vec3d position;
osg::Quat rotation;
in >> time >> position.x() >> position.y() >> position.z() >> rotation.x() >> rotation.y() >> rotation.z() >> rotation.w();
if(!in.eof())
insert(time,osg::AnimationPath::ControlPoint(position,rotation));
}
}
void AnimationPath::write(TimeControlPointMap::const_iterator itr, std::ostream& fout) const
{
const ControlPoint& cp = itr->second;
fout<<itr->first<<" "<<cp.getPosition()<<" "<<cp.getRotation()<<std::endl;
}
void AnimationPath::write(std::ostream& fout) const
{
int prec = fout.precision();
fout.precision(15);
const TimeControlPointMap& tcpm = getTimeControlPointMap();
for(TimeControlPointMap::const_iterator tcpmitr=tcpm.begin();
tcpmitr!=tcpm.end();
++tcpmitr)
{
write(tcpmitr, fout);
}
fout.precision(prec);
}
AnimationPathCallback::AnimationPathCallback(const osg::Vec3d& pivot,const osg::Vec3d& axis,float angularVelocity):
_pivotPoint(pivot),
_useInverseMatrix(false),
_timeOffset(0.0),
_timeMultiplier(1.0),
_firstTime(DBL_MAX),
_latestTime(0.0),
_pause(false),
_pauseTime(0.0)
{
_animationPath = new AnimationPath;
_animationPath->setLoopMode(osg::AnimationPath::LOOP);
double time0 = 0.0;
double time1 = osg::PI*0.5/angularVelocity;
double time2 = osg::PI*1.0/angularVelocity;
double time3 = osg::PI*1.5/angularVelocity;
double time4 = osg::PI*2.0/angularVelocity;
osg::Quat rotation0(0.0, axis);
osg::Quat rotation1(osg::PI*0.5, axis);
osg::Quat rotation2(osg::PI*1.0, axis);
osg::Quat rotation3(osg::PI*1.5, axis);
_animationPath->insert(time0,osg::AnimationPath::ControlPoint(pivot,rotation0));
_animationPath->insert(time1,osg::AnimationPath::ControlPoint(pivot,rotation1));
_animationPath->insert(time2,osg::AnimationPath::ControlPoint(pivot,rotation2));
_animationPath->insert(time3,osg::AnimationPath::ControlPoint(pivot,rotation3));
_animationPath->insert(time4,osg::AnimationPath::ControlPoint(pivot,rotation0));
}
class AnimationPathCallbackVisitor : public NodeVisitor
{
public:
AnimationPathCallbackVisitor(const AnimationPath::ControlPoint& cp, const osg::Vec3d& pivotPoint, bool useInverseMatrix):
_cp(cp),
_pivotPoint(pivotPoint),
_useInverseMatrix(useInverseMatrix) {}
virtual void apply(Camera& camera)
{
Matrix matrix;
if (_useInverseMatrix)
_cp.getInverse(matrix);
else
_cp.getMatrix(matrix);
camera.setViewMatrix(osg::Matrix::translate(-_pivotPoint)*matrix);
}
virtual void apply(CameraView& cv)
{
if (_useInverseMatrix)
{
Matrix matrix;
_cp.getInverse(matrix);
cv.setPosition(matrix.getTrans());
cv.setAttitude(_cp.getRotation().inverse());
cv.setFocalLength(1.0f/_cp.getScale().x());
}
else
{
cv.setPosition(_cp.getPosition());
cv.setAttitude(_cp.getRotation());
cv.setFocalLength(_cp.getScale().x());
}
}
virtual void apply(MatrixTransform& mt)
{
Matrix matrix;
if (_useInverseMatrix)
_cp.getInverse(matrix);
else
_cp.getMatrix(matrix);
mt.setMatrix(osg::Matrix::translate(-_pivotPoint)*matrix);
}
virtual void apply(PositionAttitudeTransform& pat)
{
if (_useInverseMatrix)
{
Matrix matrix;
_cp.getInverse(matrix);
pat.setPosition(matrix.getTrans());
pat.setAttitude(_cp.getRotation().inverse());
pat.setScale(osg::Vec3(1.0f/_cp.getScale().x(),1.0f/_cp.getScale().y(),1.0f/_cp.getScale().z()));
pat.setPivotPoint(_pivotPoint);
}
else
{
pat.setPosition(_cp.getPosition());
pat.setAttitude(_cp.getRotation());
pat.setScale(_cp.getScale());
pat.setPivotPoint(_pivotPoint);
}
}
AnimationPath::ControlPoint _cp;
osg::Vec3d _pivotPoint;
bool _useInverseMatrix;
};
void AnimationPathCallback::operator()(Node* node, NodeVisitor* nv)
{
if (_animationPath.valid() &&
nv->getVisitorType()==NodeVisitor::UPDATE_VISITOR &&
nv->getFrameStamp())
{
double time = nv->getFrameStamp()->getSimulationTime();
_latestTime = time;
if (!_pause)
{
// Only update _firstTime the first time, when its value is still DBL_MAX
if (_firstTime==DBL_MAX) _firstTime = time;
update(*node);
}
}
// must call any nested node callbacks and continue subgraph traversal.
NodeCallback::traverse(node,nv);
}
double AnimationPathCallback::getAnimationTime() const
{
return ((_latestTime-_firstTime)-_timeOffset)*_timeMultiplier;
}
void AnimationPathCallback::update(osg::Node& node)
{
AnimationPath::ControlPoint cp;
if (_animationPath->getInterpolatedControlPoint(getAnimationTime(),cp))
{
AnimationPathCallbackVisitor apcv(cp,_pivotPoint,_useInverseMatrix);
node.accept(apcv);
}
}
void AnimationPathCallback::reset()
{
#if 1
_firstTime = DBL_MAX;
_pauseTime = DBL_MAX;
#else
_firstTime = _latestTime;
_pauseTime = _latestTime;
#endif
}
void AnimationPathCallback::setPause(bool pause)
{
if (_pause==pause)
{
return;
}
_pause = pause;
if (_firstTime==DBL_MAX) return;
if (_pause)
{
_pauseTime = _latestTime;
}
else
{
_firstTime += (_latestTime-_pauseTime);
}
}