317 lines
11 KiB
C++
317 lines
11 KiB
C++
/* -*-c++-*- OpenSceneGraph - Copyright (C) 1998-2006 Robert Osfield
|
|
*
|
|
* This library is open source and may be redistributed and/or modified under
|
|
* the terms of the OpenSceneGraph Public License (OSGPL) version 0.0 or
|
|
* (at your option) any later version. The full license is in LICENSE file
|
|
* included with this distribution, and on the openscenegraph.org website.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* OpenSceneGraph Public License for more details.
|
|
*/
|
|
|
|
#ifndef OSG_PLANE
|
|
#define OSG_PLANE 1
|
|
|
|
#include <osg/Export>
|
|
#include <osg/Vec3>
|
|
#include <osg/Vec4>
|
|
#include <osg/Matrix>
|
|
#include <osg/BoundingSphere>
|
|
#include <osg/BoundingBox>
|
|
|
|
#include <vector>
|
|
|
|
namespace osg {
|
|
|
|
/** A plane class. It can be used to represent an infinite plane.*/
|
|
class OSG_EXPORT Plane
|
|
{
|
|
|
|
public:
|
|
|
|
#ifdef OSG_USE_FLOAT_PLANE
|
|
/** Type of Plane class.*/
|
|
typedef float value_type;
|
|
typedef Vec3f Vec3_type;
|
|
typedef Vec4f Vec4_type;
|
|
#else
|
|
/** Type of Plane class.*/
|
|
typedef double value_type;
|
|
typedef Vec3d Vec3_type;
|
|
typedef Vec4d Vec4_type;
|
|
#endif
|
|
|
|
/** Number of vector components. */
|
|
enum { num_components = 3 };
|
|
|
|
|
|
inline Plane() { _fv[0]=0.0; _fv[1]=0.0; _fv[2]=0.0; _fv[3]=0.0; _lowerBBCorner = 0; _upperBBCorner = 0; }
|
|
inline Plane(const Plane& pl) { set(pl); }
|
|
inline Plane(value_type a,value_type b,value_type c,value_type d) { set(a,b,c,d); }
|
|
|
|
inline Plane(const Vec4f& vec) { set(vec); }
|
|
inline Plane(const Vec4d& vec) { set(vec); }
|
|
|
|
inline Plane(const Vec3_type& norm,value_type d) { set(norm,d); }
|
|
|
|
inline Plane(const Vec3_type& v1, const Vec3_type& v2, const Vec3_type& v3) { set(v1,v2,v3); }
|
|
|
|
inline Plane(const Vec3_type& norm, const Vec3_type& point) { set(norm,point); }
|
|
|
|
inline Plane& operator = (const Plane& pl)
|
|
{
|
|
if (&pl==this) return *this;
|
|
set(pl);
|
|
return *this;
|
|
}
|
|
|
|
inline void set(const Plane& pl) { _fv[0]=pl._fv[0]; _fv[1]=pl._fv[1]; _fv[2]=pl._fv[2]; _fv[3]=pl._fv[3]; calculateUpperLowerBBCorners(); }
|
|
inline void set(value_type a, value_type b, value_type c, value_type d) { _fv[0]=a; _fv[1]=b; _fv[2]=c; _fv[3]=d; calculateUpperLowerBBCorners(); }
|
|
|
|
inline void set(const Vec4f& vec) { set(vec[0],vec[1],vec[2],vec[3]); }
|
|
inline void set(const Vec4d& vec) { set(vec[0],vec[1],vec[2],vec[3]); }
|
|
|
|
inline void set(const Vec3_type& norm, double d) { set(norm[0],norm[1],norm[2],d); }
|
|
|
|
inline void set(const Vec3_type& v1, const Vec3_type& v2, const Vec3_type& v3)
|
|
{
|
|
Vec3_type norm = (v2-v1)^(v3-v2);
|
|
value_type length = norm.length();
|
|
if (length>1e-6) norm/= length;
|
|
else norm.set(0.0,0.0,0.0);
|
|
set(norm[0],norm[1],norm[2],-(v1*norm));
|
|
}
|
|
|
|
inline void set(const Vec3_type& norm, const Vec3_type& point)
|
|
{
|
|
value_type d = -norm[0]*point[0] - norm[1]*point[1] - norm[2]*point[2];
|
|
set(norm[0],norm[1],norm[2],d);
|
|
}
|
|
|
|
/** flip/reverse the orientation of the plane.*/
|
|
inline void flip()
|
|
{
|
|
_fv[0] = -_fv[0];
|
|
_fv[1] = -_fv[1];
|
|
_fv[2] = -_fv[2];
|
|
_fv[3] = -_fv[3];
|
|
calculateUpperLowerBBCorners();
|
|
}
|
|
|
|
|
|
inline void makeUnitLength()
|
|
{
|
|
value_type inv_length = 1.0 / sqrt(_fv[0]*_fv[0] + _fv[1]*_fv[1]+ _fv[2]*_fv[2]);
|
|
_fv[0] *= inv_length;
|
|
_fv[1] *= inv_length;
|
|
_fv[2] *= inv_length;
|
|
_fv[3] *= inv_length;
|
|
}
|
|
|
|
/** calculate the upper and lower bounding box corners to be used
|
|
* in the intersect(BoundingBox&) method for speeding calculations.*/
|
|
inline void calculateUpperLowerBBCorners()
|
|
{
|
|
_upperBBCorner = (_fv[0]>=0.0?1:0) |
|
|
(_fv[1]>=0.0?2:0) |
|
|
(_fv[2]>=0.0?4:0);
|
|
|
|
_lowerBBCorner = (~_upperBBCorner)&7;
|
|
|
|
}
|
|
|
|
inline bool valid() const { return !isNaN(); }
|
|
inline bool isNaN() const { return osg::isNaN(_fv[0]) || osg::isNaN(_fv[1]) || osg::isNaN(_fv[2]) || osg::isNaN(_fv[3]); }
|
|
|
|
inline bool operator == (const Plane& plane) const { return _fv[0]==plane._fv[0] && _fv[1]==plane._fv[1] && _fv[2]==plane._fv[2] && _fv[3]==plane._fv[3]; }
|
|
|
|
inline bool operator != (const Plane& plane) const { return _fv[0]!=plane._fv[0] || _fv[1]!=plane._fv[1] || _fv[2]!=plane._fv[2] || _fv[3]!=plane._fv[3]; }
|
|
|
|
inline bool operator < (const Plane& plane) const
|
|
{
|
|
if (_fv[0]<plane._fv[0]) return true;
|
|
else if (_fv[0]>plane._fv[0]) return false;
|
|
else if (_fv[1]<plane._fv[1]) return true;
|
|
else if (_fv[1]>plane._fv[1]) return false;
|
|
else if (_fv[2]<plane._fv[2]) return true;
|
|
else if (_fv[2]>plane._fv[2]) return false;
|
|
else return (_fv[3]<plane._fv[3]);
|
|
}
|
|
|
|
|
|
inline value_type* ptr() { return _fv; }
|
|
inline const value_type* ptr() const { return _fv; }
|
|
|
|
inline Vec4_type asVec4() const { return Vec4(_fv[0],_fv[1],_fv[2],_fv[3]); }
|
|
|
|
inline value_type& operator [] (unsigned int i) { return _fv[i]; }
|
|
inline value_type operator [] (unsigned int i) const { return _fv[i]; }
|
|
|
|
|
|
inline Vec3_type getNormal() const { return Vec3_type(_fv[0],_fv[1],_fv[2]); }
|
|
|
|
/** calculate the distance between a point and the plane.*/
|
|
inline float distance(const osg::Vec3f& v) const
|
|
{
|
|
return _fv[0]*v.x()+
|
|
_fv[1]*v.y()+
|
|
_fv[2]*v.z()+
|
|
_fv[3];
|
|
}
|
|
|
|
inline double distance(const osg::Vec3d& v) const
|
|
{
|
|
return _fv[0]*v.x()+
|
|
_fv[1]*v.y()+
|
|
_fv[2]*v.z()+
|
|
_fv[3];
|
|
}
|
|
|
|
/** calculate the dot product of the plane normal and a point.*/
|
|
inline float dotProductNormal(const osg::Vec3f& v) const
|
|
{
|
|
return _fv[0]*v.x()+
|
|
_fv[1]*v.y()+
|
|
_fv[2]*v.z();
|
|
}
|
|
|
|
/** calculate the dot product of the plane normal and a point.*/
|
|
inline double dotProductNormal(const osg::Vec3d& v) const
|
|
{
|
|
return _fv[0]*v.x()+
|
|
_fv[1]*v.y()+
|
|
_fv[2]*v.z();
|
|
}
|
|
|
|
/** intersection test between plane and vertex list
|
|
return 1 if the bs is completely above plane,
|
|
return 0 if the bs intersects the plane,
|
|
return -1 if the bs is completely below the plane.*/
|
|
inline int intersect(const std::vector<Vec3>& vertices) const
|
|
{
|
|
if (vertices.empty()) return -1;
|
|
|
|
int noAbove = 0;
|
|
int noBelow = 0;
|
|
int noOn = 0;
|
|
for(std::vector<Vec3>::const_iterator itr=vertices.begin();
|
|
itr != vertices.end();
|
|
++itr)
|
|
{
|
|
float d = distance(*itr);
|
|
if (d>0.0f) ++noAbove;
|
|
else if (d<0.0f) ++noBelow;
|
|
else ++noOn;
|
|
}
|
|
|
|
if (noAbove>0)
|
|
{
|
|
if (noBelow>0) return 0;
|
|
else return 1;
|
|
}
|
|
return -1; // treat points on line as outside...
|
|
}
|
|
|
|
/** intersection test between plane and vertex list
|
|
return 1 if the bs is completely above plane,
|
|
return 0 if the bs intersects the plane,
|
|
return -1 if the bs is completely below the plane.*/
|
|
inline int intersect(const std::vector<Vec3d>& vertices) const
|
|
{
|
|
if (vertices.empty()) return -1;
|
|
|
|
int noAbove = 0;
|
|
int noBelow = 0;
|
|
int noOn = 0;
|
|
for(std::vector<Vec3d>::const_iterator itr=vertices.begin();
|
|
itr != vertices.end();
|
|
++itr)
|
|
{
|
|
float d = distance(*itr);
|
|
if (d>0.0f) ++noAbove;
|
|
else if (d<0.0f) ++noBelow;
|
|
else ++noOn;
|
|
}
|
|
|
|
if (noAbove>0)
|
|
{
|
|
if (noBelow>0) return 0;
|
|
else return 1;
|
|
}
|
|
return -1; // treat points on line as outside...
|
|
}
|
|
|
|
/** intersection test between plane and bounding sphere.
|
|
return 1 if the bs is completely above plane,
|
|
return 0 if the bs intersects the plane,
|
|
return -1 if the bs is completely below the plane.*/
|
|
inline int intersect(const BoundingSphere& bs) const
|
|
{
|
|
float d = distance(bs.center());
|
|
|
|
if (d>bs.radius()) return 1;
|
|
else if (d<-bs.radius()) return -1;
|
|
else return 0;
|
|
}
|
|
|
|
|
|
/** intersection test between plane and bounding sphere.
|
|
return 1 if the bs is completely above plane,
|
|
return 0 if the bs intersects the plane,
|
|
return -1 if the bs is completely below the plane.*/
|
|
inline int intersect(const BoundingBox& bb) const
|
|
{
|
|
// if lowest point above plane than all above.
|
|
if (distance(bb.corner(_lowerBBCorner))>0.0f) return 1;
|
|
|
|
// if highest point is below plane then all below.
|
|
if (distance(bb.corner(_upperBBCorner))<0.0f) return -1;
|
|
|
|
// d_lower<=0.0f && d_upper>=0.0f
|
|
// therefore must be crossing plane.
|
|
return 0;
|
|
|
|
}
|
|
|
|
/** Transform the plane by matrix. Note, this operation carries out
|
|
* the calculation of the inverse of the matrix since a plane
|
|
* must be multiplied by the inverse transposed to transform it. This
|
|
* make this operation expensive. If the inverse has been already
|
|
* calculated elsewhere then use transformProvidingInverse() instead.
|
|
* See http://www.worldserver.com/turk/computergraphics/NormalTransformations.pdf*/
|
|
inline void transform(const osg::Matrix& matrix)
|
|
{
|
|
osg::Matrix inverse;
|
|
inverse.invert(matrix);
|
|
transformProvidingInverse(inverse);
|
|
}
|
|
|
|
/** Transform the plane by providing a pre inverted matrix.
|
|
* see transform for details. */
|
|
inline void transformProvidingInverse(const osg::Matrix& matrix)
|
|
{
|
|
// note pre multiplications, which effectively transposes matrix.
|
|
Vec4_type vec(_fv[0],_fv[1],_fv[2],_fv[3]);
|
|
vec = matrix * vec;
|
|
set(vec);
|
|
makeUnitLength();
|
|
}
|
|
|
|
protected:
|
|
|
|
/** Vec member variable. */
|
|
value_type _fv[4];
|
|
|
|
// variables cached to optimize calcs against bounding boxes.
|
|
unsigned int _upperBBCorner;
|
|
unsigned int _lowerBBCorner;
|
|
|
|
|
|
};
|
|
|
|
} // end of namespace
|
|
|
|
#endif
|