OpenSceneGraph/examples/osganimate/osganimate.cpp

287 lines
8.9 KiB
C++

#include <osg/Notify>
#include <osg/MatrixTransform>
#include <osg/PositionAttitudeTransform>
#include <osg/Geometry>
#include <osg/Geode>
#include <osgUtil/Optimizer>
#include <osgDB/Registry>
#include <osgDB/ReadFile>
#include <osgGA/TrackballManipulator>
#include <osgGA/FlightManipulator>
#include <osgGA/DriveManipulator>
#include <osgSim/OverlayNode>
#include <osgProducer/Viewer>
osg::AnimationPath* createAnimationPath(const osg::Vec3& center,float radius,double looptime)
{
// set up the animation path
osg::AnimationPath* animationPath = new osg::AnimationPath;
animationPath->setLoopMode(osg::AnimationPath::LOOP);
int numSamples = 40;
float yaw = 0.0f;
float yaw_delta = 2.0f*osg::PI/((float)numSamples-1.0f);
float roll = osg::inDegrees(30.0f);
double time=0.0f;
double time_delta = looptime/(double)numSamples;
for(int i=0;i<numSamples;++i)
{
osg::Vec3 position(center+osg::Vec3(sinf(yaw)*radius,cosf(yaw)*radius,0.0f));
osg::Quat rotation(osg::Quat(roll,osg::Vec3(0.0,1.0,0.0))*osg::Quat(-(yaw+osg::inDegrees(90.0f)),osg::Vec3(0.0,0.0,1.0)));
animationPath->insert(time,osg::AnimationPath::ControlPoint(position,rotation));
yaw += yaw_delta;
time += time_delta;
}
return animationPath;
}
osg::Node* createBase(const osg::Vec3& center,float radius)
{
int numTilesX = 10;
int numTilesY = 10;
float width = 2*radius;
float height = 2*radius;
osg::Vec3 v000(center - osg::Vec3(width*0.5f,height*0.5f,0.0f));
osg::Vec3 dx(osg::Vec3(width/((float)numTilesX),0.0,0.0f));
osg::Vec3 dy(osg::Vec3(0.0f,height/((float)numTilesY),0.0f));
// fill in vertices for grid, note numTilesX+1 * numTilesY+1...
osg::Vec3Array* coords = new osg::Vec3Array;
int iy;
for(iy=0;iy<=numTilesY;++iy)
{
for(int ix=0;ix<=numTilesX;++ix)
{
coords->push_back(v000+dx*(float)ix+dy*(float)iy);
}
}
//Just two colours - black and white.
osg::Vec4Array* colors = new osg::Vec4Array;
colors->push_back(osg::Vec4(1.0f,1.0f,1.0f,1.0f)); // white
colors->push_back(osg::Vec4(0.0f,0.0f,0.0f,1.0f)); // black
int numColors=colors->size();
int numIndicesPerRow=numTilesX+1;
osg::UByteArray* coordIndices = new osg::UByteArray; // assumes we are using less than 256 points...
osg::UByteArray* colorIndices = new osg::UByteArray;
for(iy=0;iy<numTilesY;++iy)
{
for(int ix=0;ix<numTilesX;++ix)
{
// four vertices per quad.
coordIndices->push_back(ix +(iy+1)*numIndicesPerRow);
coordIndices->push_back(ix +iy*numIndicesPerRow);
coordIndices->push_back((ix+1)+iy*numIndicesPerRow);
coordIndices->push_back((ix+1)+(iy+1)*numIndicesPerRow);
// one color per quad
colorIndices->push_back((ix+iy)%numColors);
}
}
// set up a single normal
osg::Vec3Array* normals = new osg::Vec3Array;
normals->push_back(osg::Vec3(0.0f,0.0f,1.0f));
osg::Geometry* geom = new osg::Geometry;
geom->setVertexArray(coords);
geom->setVertexIndices(coordIndices);
geom->setColorArray(colors);
geom->setColorIndices(colorIndices);
geom->setColorBinding(osg::Geometry::BIND_PER_PRIMITIVE);
geom->setNormalArray(normals);
geom->setNormalBinding(osg::Geometry::BIND_OVERALL);
geom->addPrimitiveSet(new osg::DrawArrays(osg::PrimitiveSet::QUADS,0,coordIndices->size()));
osg::Geode* geode = new osg::Geode;
geode->addDrawable(geom);
return geode;
}
osg::Node* createMovingModel(const osg::Vec3& center, float radius)
{
float animationLength = 10.0f;
osg::AnimationPath* animationPath = createAnimationPath(center,radius,animationLength);
osg::Group* model = new osg::Group;
osg::Node* glider = osgDB::readNodeFile("glider.osg");
if (glider)
{
const osg::BoundingSphere& bs = glider->getBound();
float size = radius/bs.radius()*0.3f;
osg::MatrixTransform* positioned = new osg::MatrixTransform;
positioned->setDataVariance(osg::Object::STATIC);
positioned->setMatrix(osg::Matrix::translate(-bs.center())*
osg::Matrix::scale(size,size,size)*
osg::Matrix::rotate(osg::inDegrees(-90.0f),0.0f,0.0f,1.0f));
positioned->addChild(glider);
osg::PositionAttitudeTransform* xform = new osg::PositionAttitudeTransform;
xform->setUpdateCallback(new osg::AnimationPathCallback(animationPath,0.0,1.0));
xform->addChild(positioned);
model->addChild(xform);
}
osg::Node* cessna = osgDB::readNodeFile("cessna.osg");
if (cessna)
{
const osg::BoundingSphere& bs = cessna->getBound();
float size = radius/bs.radius()*0.3f;
osg::MatrixTransform* positioned = new osg::MatrixTransform;
positioned->setDataVariance(osg::Object::STATIC);
positioned->setMatrix(osg::Matrix::translate(-bs.center())*
osg::Matrix::scale(size,size,size)*
osg::Matrix::rotate(osg::inDegrees(180.0f),0.0f,0.0f,1.0f));
positioned->addChild(cessna);
osg::MatrixTransform* xform = new osg::MatrixTransform;
xform->setUpdateCallback(new osg::AnimationPathCallback(animationPath,0.0f,2.0));
xform->addChild(positioned);
model->addChild(xform);
}
return model;
}
osg::Node* createModel(bool overlay)
{
osg::Vec3 center(0.0f,0.0f,0.0f);
float radius = 100.0f;
osg::Group* root = new osg::Group;
osg::Node* baseModel = createBase(center-osg::Vec3(0.0f,0.0f,radius*0.5),radius);
osg::Node* movingModel = createMovingModel(center,radius*0.8f);
if (overlay)
{
osgSim::OverlayNode* overlayNode = new osgSim::OverlayNode;
overlayNode->setContinuousUpdate(true);
overlayNode->setOverlaySubgraph(movingModel);
overlayNode->addChild(baseModel);
root->addChild(overlayNode);
}
else
{
root->addChild(baseModel);
}
root->addChild(movingModel);
return root;
}
int main( int argc, char **argv )
{
// use an ArgumentParser object to manage the program arguments.
osg::ArgumentParser arguments(&argc,argv);
// set up the usage document, in case we need to print out how to use this program.
arguments.getApplicationUsage()->setDescription(arguments.getApplicationName()+" is the example which demonstrates use of osg::AnimationPath and UpdateCallbacks for adding animation to your scenes.");
arguments.getApplicationUsage()->setCommandLineUsage(arguments.getApplicationName()+" [options] filename ...");
arguments.getApplicationUsage()->addCommandLineOption("-h or --help","Display this information");
// initialize the viewer.
osgProducer::Viewer viewer(arguments);
// set up the value with sensible default event handlers.
viewer.setUpViewer(osgProducer::Viewer::STANDARD_SETTINGS);
// get details on keyboard and mouse bindings used by the viewer.
viewer.getUsage(*arguments.getApplicationUsage());
// if user request help write it out to cout.
if (arguments.read("-h") || arguments.read("--help"))
{
arguments.getApplicationUsage()->write(std::cout);
return 1;
}
bool overlay = false;
while (arguments.read("--overlay")) overlay = true;
// any option left unread are converted into errors to write out later.
arguments.reportRemainingOptionsAsUnrecognized();
// report any errors if they have occured when parsing the program aguments.
if (arguments.errors())
{
arguments.writeErrorMessages(std::cout);
return 1;
}
// load the nodes from the commandline arguments.
osg::Node* model = createModel(overlay);
if (!model)
{
return 1;
}
// tilt the scene so the default eye position is looking down on the model.
osg::MatrixTransform* rootnode = new osg::MatrixTransform;
rootnode->setMatrix(osg::Matrix::rotate(osg::inDegrees(30.0f),1.0f,0.0f,0.0f));
rootnode->addChild(model);
// run optimization over the scene graph
osgUtil::Optimizer optimzer;
optimzer.optimize(rootnode);
// set the scene to render
viewer.setSceneData(rootnode);
// create the windows and run the threads.
viewer.realize();
while( !viewer.done() )
{
// wait for all cull and draw threads to complete.
viewer.sync();
// update the scene by traversing it with the the update visitor which will
// call all node update callbacks and animations.
viewer.update();
// fire off the cull and draw traversals of the scene.
viewer.frame();
}
// wait for all cull and draw threads to complete before exit.
viewer.sync();
return 0;
}