OpenSceneGraph/src/osgVolume/RayTracedTechnique.cpp

556 lines
18 KiB
C++

/* -*-c++-*- OpenSceneGraph - Copyright (C) 1998-2009 Robert Osfield
*
* This library is open source and may be redistributed and/or modified under
* the terms of the OpenSceneGraph Public License (OSGPL) version 0.0 or
* (at your option) any later version. The full license is in LICENSE file
* included with this distribution, and on the openscenegraph.org website.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* OpenSceneGraph Public License for more details.
*/
#include <osgVolume/RayTracedTechnique>
#include <osgVolume/VolumeTile>
#include <osg/Geometry>
#include <osg/io_utils>
#include <osg/Program>
#include <osg/TexGen>
#include <osg/Texture1D>
#include <osg/Texture2D>
#include <osg/Texture3D>
#include <osg/TransferFunction>
#include <osgDB/ReadFile>
#include <osgDB/WriteFile>
namespace osgVolume
{
RayTracedTechnique::RayTracedTechnique()
{
}
RayTracedTechnique::RayTracedTechnique(const RayTracedTechnique& fft,const osg::CopyOp& copyop):
VolumeTechnique(fft,copyop)
{
}
RayTracedTechnique::~RayTracedTechnique()
{
}
enum ShadingModel
{
Standard,
Light,
Isosurface,
MaximumIntensityProjection
};
void RayTracedTechnique::init()
{
OSG_INFO<<"RayTracedTechnique::init()"<<std::endl;
if (!_volumeTile)
{
OSG_NOTICE<<"RayTracedTechnique::init(), error no volume tile assigned."<<std::endl;
return;
}
if (_volumeTile->getLayer()==0)
{
OSG_NOTICE<<"RayTracedTechnique::init(), error no layer assigend to volume tile."<<std::endl;
return;
}
if (_volumeTile->getLayer()->getImage()==0)
{
OSG_NOTICE<<"RayTracedTechnique::init(), error no image assigned to layer."<<std::endl;
return;
}
ShadingModel shadingModel = Isosurface;
float alphaFuncValue = 0.1;
_transform = new osg::MatrixTransform;
osg::ref_ptr<osg::Geode> geode = new osg::Geode;
_transform->addChild(geode.get());
osg::Image* image_3d = 0;
osg::TransferFunction1D* tf = 0;
Locator* masterLocator = _volumeTile->getLocator();
Locator* layerLocator = _volumeTile->getLayer()->getLocator();
image_3d = _volumeTile->getLayer()->getImage();
CollectPropertiesVisitor cpv;
if (_volumeTile->getLayer()->getProperty())
{
_volumeTile->getLayer()->getProperty()->accept(cpv);
}
if (cpv._isoProperty.valid())
{
shadingModel = Isosurface;
alphaFuncValue = cpv._isoProperty->getValue();
}
else if (cpv._mipProperty.valid())
{
shadingModel = MaximumIntensityProjection;
}
else if (cpv._lightingProperty.valid())
{
shadingModel = Light;
}
else
{
shadingModel = Standard;
}
if (cpv._tfProperty.valid())
{
tf = dynamic_cast<osg::TransferFunction1D*>(cpv._tfProperty->getTransferFunction());
}
if (cpv._afProperty.valid())
{
alphaFuncValue = cpv._afProperty->getValue();
}
if (!masterLocator && layerLocator) masterLocator = layerLocator;
if (!layerLocator && masterLocator) layerLocator = masterLocator;
osg::Matrix geometryMatrix;
if (masterLocator)
{
geometryMatrix = masterLocator->getTransform();
_transform->setMatrix(geometryMatrix);
masterLocator->addCallback(new TransformLocatorCallback(_transform.get()));
}
osg::Matrix imageMatrix;
if (layerLocator)
{
imageMatrix = layerLocator->getTransform();
}
OSG_INFO<<"RayTracedTechnique::init() : geometryMatrix = "<<geometryMatrix<<std::endl;
OSG_INFO<<"RayTracedTechnique::init() : imageMatrix = "<<imageMatrix<<std::endl;
osg::Texture::InternalFormatMode internalFormatMode = osg::Texture::USE_IMAGE_DATA_FORMAT;
{
osg::Texture::FilterMode minFilter = osg::Texture::LINEAR;
osg::Texture::FilterMode magFilter = osg::Texture::LINEAR;
osg::StateSet* stateset = geode->getOrCreateStateSet();
stateset->setMode(GL_ALPHA_TEST,osg::StateAttribute::ON);
osg::Program* program = new osg::Program;
stateset->setAttribute(program);
// get shaders from source
osg::ref_ptr<osg::Shader> vertexShader = osgDB::readRefShaderFile(osg::Shader::VERTEX, "shaders/volume.vert");
if (vertexShader.valid())
{
program->addShader(vertexShader.get());
}
else
{
#include "Shaders/volume_vert.cpp"
program->addShader(new osg::Shader(osg::Shader::VERTEX, volume_vert));
}
{
// set up the 3d texture itself,
// note, well set the filtering up so that mip mapping is disabled,
// gluBuild3DMipsmaps doesn't do a very good job of handled the
// imbalanced dimensions of the 256x256x4 texture.
osg::Texture3D* texture3D = new osg::Texture3D;
texture3D->setResizeNonPowerOfTwoHint(false);
texture3D->setFilter(osg::Texture3D::MIN_FILTER,minFilter);
texture3D->setFilter(osg::Texture3D::MAG_FILTER, magFilter);
texture3D->setWrap(osg::Texture3D::WRAP_R,osg::Texture3D::CLAMP_TO_BORDER);
texture3D->setWrap(osg::Texture3D::WRAP_S,osg::Texture3D::CLAMP_TO_BORDER);
texture3D->setWrap(osg::Texture3D::WRAP_T,osg::Texture3D::CLAMP_TO_BORDER);
texture3D->setBorderColor(osg::Vec4(0.0,0.0,0.0,0.0));
if (image_3d->getPixelFormat()==GL_ALPHA ||
image_3d->getPixelFormat()==GL_LUMINANCE)
{
texture3D->setInternalFormatMode(osg::Texture3D::USE_USER_DEFINED_FORMAT);
texture3D->setInternalFormat(GL_INTENSITY);
}
else
{
texture3D->setInternalFormatMode(internalFormatMode);
}
texture3D->setImage(image_3d);
stateset->setTextureAttributeAndModes(0,texture3D,osg::StateAttribute::ON);
osg::Uniform* baseTextureSampler = new osg::Uniform("baseTexture",0);
stateset->addUniform(baseTextureSampler);
}
bool enableBlending = false;
if (tf)
{
float tfScale = 1.0f;
float tfOffset = 0.0f;
ImageLayer* imageLayer = dynamic_cast<ImageLayer*>(_volumeTile->getLayer());
if (imageLayer)
{
tfOffset = (imageLayer->getTexelOffset()[3] - tf->getMinimum()) / (tf->getMaximum() - tf->getMinimum());
tfScale = imageLayer->getTexelScale()[3] / (tf->getMaximum() - tf->getMinimum());
}
else
{
tfOffset = -tf->getMinimum() / (tf->getMaximum()-tf->getMinimum());
tfScale = 1.0f / (tf->getMaximum()-tf->getMinimum());
}
osg::ref_ptr<osg::Texture1D> tf_texture = new osg::Texture1D;
tf_texture->setImage(tf->getImage());
tf_texture->setResizeNonPowerOfTwoHint(false);
tf_texture->setFilter(osg::Texture::MIN_FILTER, osg::Texture::LINEAR);
tf_texture->setFilter(osg::Texture::MAG_FILTER, osg::Texture::LINEAR);
tf_texture->setWrap(osg::Texture::WRAP_R,osg::Texture::CLAMP_TO_EDGE);
stateset->setTextureAttributeAndModes(1, tf_texture.get(), osg::StateAttribute::ON);
stateset->addUniform(new osg::Uniform("tfTexture",1));
stateset->addUniform(new osg::Uniform("tfOffset",tfOffset));
stateset->addUniform(new osg::Uniform("tfScale",tfScale));
}
if (shadingModel==MaximumIntensityProjection)
{
enableBlending = true;
if (tf)
{
osg::ref_ptr<osg::Shader> fragmentShader = osgDB::readRefShaderFile(osg::Shader::FRAGMENT, "shaders/volume_tf_mip.frag");
if (fragmentShader.valid())
{
program->addShader(fragmentShader.get());
}
else
{
#include "Shaders/volume_tf_mip_frag.cpp"
program->addShader(new osg::Shader(osg::Shader::FRAGMENT, volume_tf_mip_frag));
}
osg::Uniform* tfTextureSampler = new osg::Uniform("tfTexture",1);
stateset->addUniform(tfTextureSampler);
}
else
{
osg::ref_ptr<osg::Shader> fragmentShader = osgDB::readRefShaderFile(osg::Shader::FRAGMENT, "shaders/volume_mip.frag");
if (fragmentShader.valid())
{
program->addShader(fragmentShader.get());
}
else
{
#include "Shaders/volume_mip_frag.cpp"
program->addShader(new osg::Shader(osg::Shader::FRAGMENT, volume_mip_frag));
}
}
}
else if (shadingModel==Isosurface)
{
enableBlending = true;
stateset->addUniform(cpv._isoProperty->getUniform());
if (tf)
{
osg::ref_ptr<osg::Shader> fragmentShader = osgDB::readRefShaderFile(osg::Shader::FRAGMENT, "shaders/volume_tf_iso.frag");
if (fragmentShader.valid())
{
program->addShader(fragmentShader.get());
}
else
{
#include "Shaders/volume_tf_iso_frag.cpp"
program->addShader(new osg::Shader(osg::Shader::FRAGMENT, volume_tf_iso_frag));
}
}
else
{
osg::ref_ptr<osg::Shader> fragmentShader = osgDB::readRefShaderFile(osg::Shader::FRAGMENT, "shaders/volume_iso.frag");
if (fragmentShader.valid())
{
OSG_INFO<<"Shader found"<<std::endl;
program->addShader(fragmentShader.get());
}
else
{
OSG_INFO<<"No Shader found"<<std::endl;
#include "Shaders/volume_iso_frag.cpp"
program->addShader(new osg::Shader(osg::Shader::FRAGMENT, volume_iso_frag));
}
}
}
else if (shadingModel==Light)
{
enableBlending = true;
if (tf)
{
osg::ref_ptr<osg::Shader> fragmentShader = osgDB::readRefShaderFile(osg::Shader::FRAGMENT, "shaders/volume_lit_tf.frag");
if (fragmentShader.valid())
{
program->addShader(fragmentShader.get());
}
else
{
#include "Shaders/volume_lit_tf_frag.cpp"
program->addShader(new osg::Shader(osg::Shader::FRAGMENT, volume_lit_tf_frag));
}
}
else
{
osg::ref_ptr<osg::Shader> fragmentShader = osgDB::readRefShaderFile(osg::Shader::FRAGMENT, "shaders/volume_lit.frag");
if (fragmentShader.valid())
{
program->addShader(fragmentShader.get());
}
else
{
#include "Shaders/volume_lit_frag.cpp"
program->addShader(new osg::Shader(osg::Shader::FRAGMENT, volume_lit_frag));
}
}
}
else
{
enableBlending = true;
if (tf)
{
osg::ref_ptr<osg::Shader> fragmentShader = osgDB::readRefShaderFile(osg::Shader::FRAGMENT, "shaders/volume_tf.frag");
if (fragmentShader.valid())
{
program->addShader(fragmentShader.get());
}
else
{
#include "Shaders/volume_tf_frag.cpp"
program->addShader(new osg::Shader(osg::Shader::FRAGMENT, volume_tf_frag));
}
}
else
{
osg::ref_ptr<osg::Shader> fragmentShader = osgDB::readRefShaderFile(osg::Shader::FRAGMENT, "shaders/volume.frag");
if (fragmentShader.valid())
{
program->addShader(fragmentShader.get());
}
else
{
#include "Shaders/volume_frag.cpp"
program->addShader(new osg::Shader(osg::Shader::FRAGMENT, volume_frag));
}
}
}
if (cpv._sampleDensityProperty.valid())
stateset->addUniform(cpv._sampleDensityProperty->getUniform());
else
stateset->addUniform(new osg::Uniform("SampleDensityValue",0.0005f));
if (cpv._transparencyProperty.valid())
stateset->addUniform(cpv._transparencyProperty->getUniform());
else
stateset->addUniform(new osg::Uniform("TransparencyValue",1.0f));
if (cpv._afProperty.valid())
stateset->addUniform(cpv._afProperty->getUniform());
else
stateset->addUniform(new osg::Uniform("AlphaFuncValue",alphaFuncValue));
if (enableBlending)
{
stateset->setMode(GL_BLEND, osg::StateAttribute::ON);
stateset->setRenderingHint(osg::StateSet::TRANSPARENT_BIN);
}
stateset->setMode(GL_CULL_FACE, osg::StateAttribute::ON);
osg::TexGen* texgen = new osg::TexGen;
texgen->setMode(osg::TexGen::OBJECT_LINEAR);
texgen->setPlanesFromMatrix( geometryMatrix * osg::Matrix::inverse(imageMatrix));
if (masterLocator)
{
osg::ref_ptr<TexGenLocatorCallback> locatorCallback = new TexGenLocatorCallback(texgen, masterLocator, layerLocator);
masterLocator->addCallback(locatorCallback.get());
if (masterLocator != layerLocator)
{
if (layerLocator) layerLocator->addCallback(locatorCallback.get());
}
}
stateset->setTextureAttributeAndModes(0, texgen, osg::StateAttribute::ON);
}
{
osg::Geometry* geom = new osg::Geometry;
osg::Vec3Array* coords = new osg::Vec3Array(8);
(*coords)[0] = osg::Vec3d(0.0,0.0,0.0);
(*coords)[1] = osg::Vec3d(1.0,0.0,0.0);
(*coords)[2] = osg::Vec3d(1.0,1.0,0.0);
(*coords)[3] = osg::Vec3d(0.0,1.0,0.0);
(*coords)[4] = osg::Vec3d(0.0,0.0,1.0);
(*coords)[5] = osg::Vec3d(1.0,0.0,1.0);
(*coords)[6] = osg::Vec3d(1.0,1.0,1.0);
(*coords)[7] = osg::Vec3d(0.0,1.0,1.0);
geom->setVertexArray(coords);
osg::Vec4Array* colours = new osg::Vec4Array(1);
(*colours)[0].set(1.0f,1.0f,1.0,1.0f);
geom->setColorArray(colours, osg::Array::BIND_OVERALL);
osg::DrawElementsUShort* drawElements = new osg::DrawElementsUShort(GL_QUADS);
// bottom
drawElements->push_back(0);
drawElements->push_back(1);
drawElements->push_back(2);
drawElements->push_back(3);
// bottom
drawElements->push_back(3);
drawElements->push_back(2);
drawElements->push_back(6);
drawElements->push_back(7);
// left
drawElements->push_back(0);
drawElements->push_back(3);
drawElements->push_back(7);
drawElements->push_back(4);
// right
drawElements->push_back(5);
drawElements->push_back(6);
drawElements->push_back(2);
drawElements->push_back(1);
// front
drawElements->push_back(1);
drawElements->push_back(0);
drawElements->push_back(4);
drawElements->push_back(5);
// top
drawElements->push_back(7);
drawElements->push_back(6);
drawElements->push_back(5);
drawElements->push_back(4);
geom->addPrimitiveSet(drawElements);
geode->addDrawable(geom);
}
if (cpv._sampleDensityWhenMovingProperty.valid())
{
_whenMovingStateSet = new osg::StateSet;
_whenMovingStateSet->addUniform(cpv._sampleDensityWhenMovingProperty->getUniform(), osg::StateAttribute::OVERRIDE | osg::StateAttribute::ON);
}
}
void RayTracedTechnique::update(osgUtil::UpdateVisitor* /*uv*/)
{
// OSG_NOTICE<<"RayTracedTechnique:update(osgUtil::UpdateVisitor* nv):"<<std::endl;
}
void RayTracedTechnique::cull(osgUtil::CullVisitor* cv)
{
if (!_transform.valid()) return;
if (_whenMovingStateSet.valid() && isMoving(cv))
{
cv->pushStateSet(_whenMovingStateSet.get());
_transform->accept(*cv);
cv->popStateSet();
}
else
{
_transform->accept(*cv);
}
}
void RayTracedTechnique::cleanSceneGraph()
{
OSG_NOTICE<<"RayTracedTechnique::cleanSceneGraph()"<<std::endl;
}
void RayTracedTechnique::traverse(osg::NodeVisitor& nv)
{
// OSG_NOTICE<<"RayTracedTechnique::traverse(osg::NodeVisitor& nv)"<<std::endl;
if (!_volumeTile) return;
// if app traversal update the frame count.
if (nv.getVisitorType()==osg::NodeVisitor::UPDATE_VISITOR)
{
if (_volumeTile->getDirty()) _volumeTile->init();
osgUtil::UpdateVisitor* uv = dynamic_cast<osgUtil::UpdateVisitor*>(&nv);
if (uv)
{
update(uv);
return;
}
}
else if (nv.getVisitorType()==osg::NodeVisitor::CULL_VISITOR)
{
osgUtil::CullVisitor* cv = dynamic_cast<osgUtil::CullVisitor*>(&nv);
if (cv)
{
cull(cv);
return;
}
}
if (_volumeTile->getDirty())
{
OSG_INFO<<"******* Doing init ***********"<<std::endl;
_volumeTile->init();
}
}
} // end of osgVolume namespace