d12a726d5b
the conclusion that the osg::Matrix::inverse was broken, have lifted a new implementation from sgl and it seems to work fine. Will need further testing but looks good.
527 lines
14 KiB
C++
527 lines
14 KiB
C++
#include <osg/Matrix>
|
|
#include <osg/Quat>
|
|
#include <osg/Notify>
|
|
#include <osg/Types>
|
|
#include <osg/Math>
|
|
|
|
#include <stdlib.h>
|
|
|
|
using namespace osg;
|
|
|
|
#define SET_ROW(row, v1, v2, v3, v4 ) \
|
|
_mat[(row)][0] = (v1); \
|
|
_mat[(row)][1] = (v2); \
|
|
_mat[(row)][2] = (v3); \
|
|
_mat[(row)][3] = (v4);
|
|
|
|
#define INNER_PRODUCT(a,b,r,c) \
|
|
((a)._mat[r][0] * (b)._mat[0][c]) \
|
|
+((a)._mat[r][1] * (b)._mat[1][c]) \
|
|
+((a)._mat[r][2] * (b)._mat[2][c]) \
|
|
+((a)._mat[r][3] * (b)._mat[3][c])
|
|
|
|
|
|
|
|
template <class T>
|
|
inline T SGL_ABS(T a)
|
|
{
|
|
return (a >= 0 ? a : -a);
|
|
}
|
|
|
|
#ifndef SGL_SWAP
|
|
#define SGL_SWAP(a,b,temp) ((temp)=(a),(a)=(b),(b)=(temp))
|
|
#endif
|
|
|
|
bool inverse(const Matrix& mat,Matrix& m_matrix)
|
|
{
|
|
unsigned int indxc[4], indxr[4], ipiv[4];
|
|
unsigned int i,j,k,l,ll;
|
|
unsigned int icol = 0;
|
|
unsigned int irow = 0;
|
|
float temp, pivinv, dum, big;
|
|
|
|
// copy in place this may be unnecessary
|
|
m_matrix = mat;
|
|
|
|
for (j=0; j<4; j++) ipiv[j]=0;
|
|
|
|
for(i=0;i<4;i++)
|
|
{
|
|
big=(float)0.0;
|
|
for (j=0; j<4; j++)
|
|
if (ipiv[j] != 1)
|
|
for (k=0; k<4; k++)
|
|
{
|
|
if (ipiv[k] == 0)
|
|
{
|
|
if (SGL_ABS(m_matrix(j,k)) >= big)
|
|
{
|
|
big = SGL_ABS(m_matrix(j,k));
|
|
irow=j;
|
|
icol=k;
|
|
}
|
|
}
|
|
else if (ipiv[k] > 1)
|
|
return false;
|
|
}
|
|
++(ipiv[icol]);
|
|
if (irow != icol)
|
|
for (l=0; l<4; l++) SGL_SWAP(m_matrix(irow,l),
|
|
m_matrix(icol,l),
|
|
temp);
|
|
|
|
indxr[i]=irow;
|
|
indxc[i]=icol;
|
|
if (m_matrix(icol,icol) == 0)
|
|
return false;
|
|
|
|
pivinv = 1.0/m_matrix(icol,icol);
|
|
m_matrix(icol,icol) = 1;
|
|
for (l=0; l<4; l++) m_matrix(icol,l) *= pivinv;
|
|
for (ll=0; ll<4; ll++)
|
|
if (ll != icol)
|
|
{
|
|
dum=m_matrix(ll,icol);
|
|
m_matrix(ll,icol) = 0;
|
|
for (l=0; l<4; l++) m_matrix(ll,l) -= m_matrix(icol,l)*dum;
|
|
}
|
|
}
|
|
for (int lx=4; lx>0; --lx)
|
|
{
|
|
if (indxr[lx-1] != indxc[lx-1])
|
|
for (k=0; k<4; k++) SGL_SWAP(m_matrix(k,indxr[lx-1]),
|
|
m_matrix(k,indxc[lx-1]),temp);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool inverseAffine(const Matrix& mat,Matrix& m_matrix)
|
|
{
|
|
// | R p |' | R' -R'p |'
|
|
// | | -> | |
|
|
// | 0 0 0 1 | | 0 0 0 1 |
|
|
for (unsigned int i=0; i<3; i++)
|
|
{
|
|
m_matrix(i,3) = 0;
|
|
m_matrix(3,i) = -(mat(i,0)*mat(3,0) +
|
|
mat(i,1)*mat(3,1) +
|
|
mat(i,2)*mat(3,2));
|
|
for (unsigned int j=0; j<3; j++)
|
|
{
|
|
m_matrix(i,j) = mat(j,i);
|
|
}
|
|
}
|
|
m_matrix(3,3) = 1;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
|
|
Matrix::Matrix() : Object()
|
|
{
|
|
makeIdentity();
|
|
}
|
|
|
|
Matrix::Matrix( const Matrix& other) : Object()
|
|
{
|
|
set( (const float *) other._mat );
|
|
}
|
|
|
|
Matrix::Matrix( const float * def )
|
|
{
|
|
set( def );
|
|
}
|
|
|
|
Matrix::Matrix( float a00, float a01, float a02, float a03,
|
|
float a10, float a11, float a12, float a13,
|
|
float a20, float a21, float a22, float a23,
|
|
float a30, float a31, float a32, float a33)
|
|
{
|
|
SET_ROW(0, a00, a01, a02, a03 )
|
|
SET_ROW(1, a10, a11, a12, a13 )
|
|
SET_ROW(2, a20, a21, a22, a23 )
|
|
SET_ROW(3, a30, a31, a32, a33 )
|
|
}
|
|
|
|
Matrix& Matrix::operator = (const Matrix& other )
|
|
{
|
|
if( &other == this ) return *this;
|
|
set((const float*)other._mat);
|
|
return *this;
|
|
}
|
|
|
|
void Matrix::set( float const * const def )
|
|
{
|
|
memcpy( _mat, def, sizeof(_mat) );
|
|
}
|
|
|
|
|
|
void Matrix::set( float a00, float a01, float a02, float a03,
|
|
float a10, float a11, float a12, float a13,
|
|
float a20, float a21, float a22, float a23,
|
|
float a30, float a31, float a32, float a33)
|
|
{
|
|
SET_ROW(0, a00, a01, a02, a03 )
|
|
SET_ROW(1, a10, a11, a12, a13 )
|
|
SET_ROW(2, a20, a21, a22, a23 )
|
|
SET_ROW(3, a30, a31, a32, a33 )
|
|
}
|
|
|
|
void Matrix::setTrans( float tx, float ty, float tz )
|
|
{
|
|
_mat[3][0] = tx;
|
|
_mat[3][1] = ty;
|
|
_mat[3][2] = tz;
|
|
}
|
|
|
|
|
|
void Matrix::setTrans( const Vec3& v )
|
|
{
|
|
_mat[3][0] = v[0];
|
|
_mat[3][1] = v[1];
|
|
_mat[3][2] = v[2];
|
|
}
|
|
|
|
void Matrix::makeIdentity()
|
|
{
|
|
SET_ROW(0, 1, 0, 0, 0 )
|
|
SET_ROW(1, 0, 1, 0, 0 )
|
|
SET_ROW(2, 0, 0, 1, 0 )
|
|
SET_ROW(3, 0, 0, 0, 1 )
|
|
}
|
|
|
|
void Matrix::makeScale( const Vec3& v )
|
|
{
|
|
makeScale(v[0], v[1], v[2] );
|
|
}
|
|
|
|
void Matrix::makeScale( float x, float y, float z )
|
|
{
|
|
SET_ROW(0, x, 0, 0, 0 )
|
|
SET_ROW(1, 0, y, 0, 0 )
|
|
SET_ROW(2, 0, 0, z, 0 )
|
|
SET_ROW(3, 0, 0, 0, 1 )
|
|
}
|
|
|
|
void Matrix::makeTranslate( const Vec3& v )
|
|
{
|
|
makeTranslate( v[0], v[1], v[2] );
|
|
}
|
|
|
|
void Matrix::makeTranslate( float x, float y, float z )
|
|
{
|
|
SET_ROW(0, 1, 0, 0, 0 )
|
|
SET_ROW(1, 0, 1, 0, 0 )
|
|
SET_ROW(2, 0, 0, 1, 0 )
|
|
SET_ROW(3, x, y, z, 1 )
|
|
}
|
|
|
|
void Matrix::makeRotate( const Vec3& from, const Vec3& to )
|
|
{
|
|
Quat quat;
|
|
quat.makeRotate(from,to);
|
|
quat.get(*this);
|
|
}
|
|
|
|
void Matrix::makeRotate( float angle, const Vec3& axis )
|
|
{
|
|
Quat quat;
|
|
quat.makeRotate( angle, axis);
|
|
quat.get(*this);
|
|
}
|
|
|
|
void Matrix::makeRotate( float angle, float x, float y, float z )
|
|
{
|
|
Quat quat;
|
|
quat.makeRotate( angle, x, y, z);
|
|
quat.get(*this);
|
|
}
|
|
|
|
void Matrix::makeRotate( const Quat& q )
|
|
{
|
|
q.get(*this);
|
|
}
|
|
|
|
void Matrix::makeRotate( float yaw, float pitch, float roll)
|
|
{
|
|
|
|
// lifted straight from SOLID library v1.01 Quaternion.h
|
|
// available from http://www.win.tue.nl/~gino/solid/
|
|
// and also distributed under the LGPL
|
|
float cosYaw = cos(yaw / 2);
|
|
float sinYaw = sin(yaw / 2);
|
|
float cosPitch = cos(pitch / 2);
|
|
float sinPitch = sin(pitch / 2);
|
|
float cosRoll = cos(roll / 2);
|
|
float sinRoll = sin(roll / 2);
|
|
Quat q(sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw,
|
|
cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw,
|
|
cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw,
|
|
cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw);
|
|
|
|
q.get(*this);
|
|
}
|
|
|
|
void Matrix::mult( const Matrix& lhs, const Matrix& rhs )
|
|
{
|
|
if (&lhs==this)
|
|
{
|
|
postMult(rhs);
|
|
return;
|
|
}
|
|
if (&rhs==this)
|
|
{
|
|
preMult(lhs);
|
|
}
|
|
|
|
// PRECONDITION: We assume neither &lhs nor &rhs == this
|
|
// if it did, use preMult or postMult instead
|
|
_mat[0][0] = INNER_PRODUCT(lhs, rhs, 0, 0);
|
|
_mat[0][1] = INNER_PRODUCT(lhs, rhs, 0, 1);
|
|
_mat[0][2] = INNER_PRODUCT(lhs, rhs, 0, 2);
|
|
_mat[0][3] = INNER_PRODUCT(lhs, rhs, 0, 3);
|
|
_mat[1][0] = INNER_PRODUCT(lhs, rhs, 1, 0);
|
|
_mat[1][1] = INNER_PRODUCT(lhs, rhs, 1, 1);
|
|
_mat[1][2] = INNER_PRODUCT(lhs, rhs, 1, 2);
|
|
_mat[1][3] = INNER_PRODUCT(lhs, rhs, 1, 3);
|
|
_mat[2][0] = INNER_PRODUCT(lhs, rhs, 2, 0);
|
|
_mat[2][1] = INNER_PRODUCT(lhs, rhs, 2, 1);
|
|
_mat[2][2] = INNER_PRODUCT(lhs, rhs, 2, 2);
|
|
_mat[2][3] = INNER_PRODUCT(lhs, rhs, 2, 3);
|
|
_mat[3][0] = INNER_PRODUCT(lhs, rhs, 3, 0);
|
|
_mat[3][1] = INNER_PRODUCT(lhs, rhs, 3, 1);
|
|
_mat[3][2] = INNER_PRODUCT(lhs, rhs, 3, 2);
|
|
_mat[3][3] = INNER_PRODUCT(lhs, rhs, 3, 3);
|
|
}
|
|
|
|
void Matrix::preMult( const Matrix& other )
|
|
{
|
|
// brute force method requiring a copy
|
|
//Matrix tmp(other* *this);
|
|
// *this = tmp;
|
|
|
|
// more efficient method just use a float[4] for temporary storage.
|
|
float t[4];
|
|
for(int col=0; col<4; ++col) {
|
|
t[0] = INNER_PRODUCT( other, *this, 0, col );
|
|
t[1] = INNER_PRODUCT( other, *this, 1, col );
|
|
t[2] = INNER_PRODUCT( other, *this, 2, col );
|
|
t[3] = INNER_PRODUCT( other, *this, 3, col );
|
|
_mat[0][col] = t[0];
|
|
_mat[1][col] = t[1];
|
|
_mat[2][col] = t[2];
|
|
_mat[3][col] = t[3];
|
|
}
|
|
|
|
}
|
|
|
|
void Matrix::postMult( const Matrix& other )
|
|
{
|
|
// brute force method requiring a copy
|
|
//Matrix tmp(*this * other);
|
|
// *this = tmp;
|
|
|
|
// more efficient method just use a float[4] for temporary storage.
|
|
float t[4];
|
|
for(int row=0; row<4; ++row)
|
|
{
|
|
t[0] = INNER_PRODUCT( *this, other, row, 0 );
|
|
t[1] = INNER_PRODUCT( *this, other, row, 1 );
|
|
t[2] = INNER_PRODUCT( *this, other, row, 2 );
|
|
t[3] = INNER_PRODUCT( *this, other, row, 3 );
|
|
SET_ROW(row, t[0], t[1], t[2], t[3] )
|
|
}
|
|
}
|
|
|
|
#undef SET_ROW
|
|
#undef INNER_PRODUCT
|
|
|
|
bool Matrix::invert( const Matrix& invm )
|
|
{
|
|
if (&invm==this) {
|
|
Matrix tm(invm);
|
|
return invert(tm);
|
|
}
|
|
/*
|
|
if ( invm._mat[0][3] == 0.0
|
|
&& invm._mat[1][3] == 0.0
|
|
&& invm._mat[2][3] == 0.0
|
|
&& invm._mat[3][3] == 1.0 )
|
|
{
|
|
return inverseAffine( invm,*this );
|
|
}
|
|
*/
|
|
return inverse(invm,*this);
|
|
|
|
// code lifted from VR Juggler.
|
|
// not cleanly added, but seems to work. RO.
|
|
|
|
const float* a = reinterpret_cast<const float*>(invm._mat);
|
|
float* b = reinterpret_cast<float*>(_mat);
|
|
|
|
int n = 4;
|
|
int i, j, k;
|
|
int r[ 4], c[ 4], row[ 4], col[ 4];
|
|
float m[ 4][ 4*2], pivot, max_m, tmp_m, fac;
|
|
|
|
/* Initialization */
|
|
for ( i = 0; i < n; i ++ )
|
|
{
|
|
r[ i] = c[ i] = 0;
|
|
row[ i] = col[ i] = 0;
|
|
}
|
|
|
|
/* Set working matrix */
|
|
for ( i = 0; i < n; i++ )
|
|
{
|
|
for ( j = 0; j < n; j++ )
|
|
{
|
|
m[ i][ j] = a[ i * n + j];
|
|
m[ i][ j + n] = ( i == j ) ? 1.0 : 0.0 ;
|
|
}
|
|
}
|
|
|
|
/* Begin of loop */
|
|
for ( k = 0; k < n; k++ )
|
|
{
|
|
/* Choosing the pivot */
|
|
for ( i = 0, max_m = 0; i < n; i++ )
|
|
{
|
|
if ( row[ i] ) continue;
|
|
for ( j = 0; j < n; j++ )
|
|
{
|
|
if ( col[ j] ) continue;
|
|
tmp_m = fabs( m[ i][j]);
|
|
if ( tmp_m > max_m)
|
|
{
|
|
max_m = tmp_m;
|
|
r[ k] = i;
|
|
c[ k] = j;
|
|
}
|
|
}
|
|
}
|
|
row[ r[k] ] = col[ c[k] ] = 1;
|
|
pivot = m[ r[ k] ][ c[ k] ];
|
|
|
|
if ( fabs( pivot) <= 1e-20)
|
|
{
|
|
notify(INFO) << "Warning: pivot = "<< pivot <<" in Matrix::invert(), cannot compute inverse."<<std::endl;
|
|
notify(INFO) << "input matrix to Matrix::invert() was = "<< invm <<std::endl;
|
|
//makeIdentity();
|
|
return false;
|
|
}
|
|
|
|
/* Normalization */
|
|
for ( j = 0; j < 2*n; j++ )
|
|
{
|
|
if ( j == c[ k] )
|
|
m[ r[ k]][ j] = 1.0;
|
|
else
|
|
m[ r[ k]][ j] /=pivot;
|
|
}
|
|
|
|
/* Reduction */
|
|
for ( i = 0; i < n; i++ )
|
|
{
|
|
if ( i == r[ k] )
|
|
continue;
|
|
|
|
for ( j=0, fac = m[ i][ c[k]];j < 2*n; j++ )
|
|
{
|
|
if ( j == c[ k] )
|
|
m[ i][ j] =0.0;
|
|
else
|
|
m[ i][ j] -=fac * m[ r[k]][ j];
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Assign invers to a matrix */
|
|
for ( i = 0; i < n; i++ )
|
|
for ( j = 0; j < n; j++ )
|
|
row[ i] = ( c[ j] == i ) ? r[j] : row[ i];
|
|
|
|
for ( i = 0; i < n; i++ )
|
|
for ( j = 0; j < n; j++ )
|
|
b[ i * n + j] = m[ row[ i]][j + n];
|
|
|
|
return true; // It worked
|
|
|
|
|
|
}
|
|
|
|
const double PRECISION_LIMIT = 1.0e-15;
|
|
|
|
bool Matrix::invertAffine( const Matrix& other )
|
|
{
|
|
// adapted from Graphics Gems II.
|
|
//
|
|
// This method treats the Matrix as a block Matrix and calculates
|
|
// the inverse of one subMatrix, improving performance over something
|
|
// that inverts any non-singular Matrix:
|
|
// -1
|
|
// -1 [ A 0 ] -1 [ A 0 ]
|
|
// M = [ ] = [ -1 ]
|
|
// [ C 1 ] [-CA 1 ]
|
|
//
|
|
// returns true if _m is nonsingular, and (*this) contains its inverse
|
|
// otherwise returns false. (*this unchanged)
|
|
|
|
// assert( this->isAffine())?
|
|
double det_1, pos, neg, temp;
|
|
|
|
pos = neg = 0.0;
|
|
|
|
#define ACCUMULATE \
|
|
{ \
|
|
if(temp >= 0.0) pos += temp; \
|
|
else neg += temp; \
|
|
}
|
|
|
|
temp = other._mat[0][0] * other._mat[1][1] * other._mat[2][2]; ACCUMULATE;
|
|
temp = other._mat[0][1] * other._mat[1][2] * other._mat[2][0]; ACCUMULATE;
|
|
temp = other._mat[0][2] * other._mat[1][0] * other._mat[2][1]; ACCUMULATE;
|
|
|
|
temp = - other._mat[0][2] * other._mat[1][1] * other._mat[2][0]; ACCUMULATE;
|
|
temp = - other._mat[0][1] * other._mat[1][0] * other._mat[2][2]; ACCUMULATE;
|
|
temp = - other._mat[0][0] * other._mat[1][2] * other._mat[2][1]; ACCUMULATE;
|
|
|
|
det_1 = pos + neg;
|
|
|
|
if( (det_1 == 0.0) || (fabs(det_1/(pos-neg)) < PRECISION_LIMIT )) {
|
|
// _m has no inverse
|
|
notify(WARN) << "Matrix::invert(): Matrix has no inverse." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
// inverse is adj(A)/det(A)
|
|
det_1 = 1.0 / det_1;
|
|
|
|
_mat[0][0] = (other._mat[1][1] * other._mat[2][2] - other._mat[1][2] * other._mat[2][1]) * det_1;
|
|
_mat[1][0] = (other._mat[1][0] * other._mat[2][2] - other._mat[1][2] * other._mat[2][0]) * det_1;
|
|
_mat[2][0] = (other._mat[1][0] * other._mat[2][1] - other._mat[1][1] * other._mat[2][0]) * det_1;
|
|
_mat[0][1] = (other._mat[0][1] * other._mat[2][2] - other._mat[0][2] * other._mat[2][1]) * det_1;
|
|
_mat[1][1] = (other._mat[0][0] * other._mat[2][2] - other._mat[0][2] * other._mat[2][0]) * det_1;
|
|
_mat[2][1] = (other._mat[0][0] * other._mat[2][1] - other._mat[0][1] * other._mat[2][0]) * det_1;
|
|
_mat[0][2] = (other._mat[0][1] * other._mat[1][2] - other._mat[0][2] * other._mat[1][1]) * det_1;
|
|
_mat[1][2] = (other._mat[0][0] * other._mat[1][2] - other._mat[0][2] * other._mat[1][0]) * det_1;
|
|
_mat[2][2] = (other._mat[0][0] * other._mat[1][1] - other._mat[0][1] * other._mat[1][0]) * det_1;
|
|
|
|
// calculate -C * inv(A)
|
|
_mat[3][0] = -(other._mat[3][0] * _mat[0][0] + other._mat[3][1] * _mat[1][0] + other._mat[3][2] * _mat[2][0] );
|
|
_mat[3][1] = -(other._mat[3][0] * _mat[0][1] + other._mat[3][1] * _mat[1][1] + other._mat[3][2] * _mat[2][1] );
|
|
_mat[3][2] = -(other._mat[3][0] * _mat[0][2] + other._mat[3][1] * _mat[1][2] + other._mat[3][2] * _mat[2][2] );
|
|
|
|
_mat[0][3] = 0.0;
|
|
_mat[1][3] = 0.0;
|
|
_mat[2][3] = 0.0;
|
|
_mat[3][3] = 1.0;
|
|
|
|
return true;
|
|
}
|
|
|
|
|